Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(31): e2401818, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38529734

RESUMO

Affordable highly efficient catalysts for electrochemical oxygen evolution reaction (OER) play pivotal roles in green hydrogen production via water electrolysis. Regarding the non-noble metal-based electrocatalysts, considerable efforts are made to decipher the cation leaching and surface reconstruction; yet, little attention is focused on correlating them with catalytical activity and stability. Herein, in situ reconstruction of Fe-modified Co2VO4 precursor catalyst to form a highly active (Fe,V)-doped CoOOH phase for OER is reported, during which partial leaching of V accelerates the surface reconstruction and the V reserved in the reconstructed CoOOH layer in the form of alkali-resistant V2O3 serves for dynamic charge compensation and prevention of excessive loss of lattice oxygen and Co dissolution. Fe substitution facilitates Co pre-oxidation and endows the catalysts with structural flexibility by elevating O 2p band level; hence, encouraging participation of lattice oxygen in OER. The optimized Co2Fe0.25V0.75O4 electrode can afford current densities of 10 and 500 mA cm-2 at low overpotentials of 205 and 320 mV, respectively, with satisfactory stability over 600 h. By coupling with Pt/C cathode, the assembled alkaline electrolyzer can deliver 500 mA cm-2 at a low cell voltage of 1.798 V, better than that of commercial RuO2 (+) || Pt/C (-).

2.
Chem Commun (Camb) ; 60(28): 3838-3841, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38497308

RESUMO

In this study, self-supported NiFeP was fabricated on Ni mesh (NiFeP/NM) via a two-step monopulse electrodeposition and phosphorization strategy. The NiFeP/NM exhibited excellent activity through electrochemical surface reconstruction to generate true active sites, requiring low overpotentials of 349 mV and 310 mV to reach a current density of 500 mA cm-2 for the HER and OER, respectively, and exhibiting satisfactory stability in 6 M NaOH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA