Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCO Precis Oncol ; 8: e2300688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885476

RESUMO

PURPOSE: Targeted therapy in translocation-associated sarcomas has been limited to oncogenic activation of tyrosine kinases or ligands while gene fusions resulting in aberrant expression of transcription factors have been notoriously difficult to target. Moreover, secondary genetic alterations in sarcomas driven by translocations are uncommon, comprising mostly alterations in tumor suppressor genes (TP53, CDKN2A/B). Our study was triggered by an index patient showing a dramatic clinical response by targeting the secondary BRAF V600E mutation in a metastatic angiomatoid fibrous histiocytoma (AFH) harboring the typical EWSR1::CREB1 fusion. MATERIALS AND METHODS: The patient, a 28-year-old female, was diagnosed with an AFH of the thigh and followed a highly aggressive clinical course, with rapid multifocal local recurrence within a year and widespread distant metastases (adrenal, bone, liver, lung). The tumor showed characteristic morphologic features, with histiocytoid cells intermixed with hemorrhagic cystic spaces and lymphoid aggregates. In addition to the pathognomonic EWSR1::CREB1 fusion, targeted DNA sequencing revealed in both primary and adrenal metastatic sites a hot spot BRAF V600E mutation and a CDKN2A/B deletion. Accordingly, the patient was treated with a BRAF-MEK inhibitor combination (encorafenib/binimetinib) showing an excellent but short-lived response. RESULTS: Using a CRISPR-Cas9 approach, we introduced the BRAF c.1799 T>A point mutation in human embryonic stem (hES) cells harboring a conditional EWSR1 (exon7)::CREB1 (exon7) translocation and further differentiated to mesenchymal progenitors (hES-MP) before fusion expression. The cells maintained the fusion transcript expression and the AFH core gene signature while responding to treatment with encorafenib and binimetinib. CONCLUSION: These results highlight that additional targeted DNA NGS in chemotherapy-resistant translocation-associated sarcomas may reveal actionable oncogenic drivers occurring as secondary genetic events during disease progression.


Assuntos
Proteínas de Fusão Oncogênica , Humanos , Feminino , Adulto , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas B-raf/genética , Histiocitoma Fibroso Maligno/genética , Histiocitoma Fibroso Maligno/tratamento farmacológico , Sarcoma/genética , Sarcoma/tratamento farmacológico , Mutação
2.
Neuroinformatics ; 10(1): 97-114, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21789500

RESUMO

BrainInfo ( http://braininfo.org ) is a growing portal to neuroscientific information on the Web. It is indexed by NeuroNames, an ontology designed to compensate for ambiguities in neuroanatomical nomenclature. The 20-year old ontology continues to evolve toward the ideal of recognizing all names of neuroanatomical entities and accommodating all structural concepts about which neuroscientists communicate, including multiple concepts of entities for which neuroanatomists have yet to determine the best or 'true' conceptualization. To make the definitions of structural concepts unambiguous and terminologically consistent we created a 'default vocabulary' of unique structure names selected from existing terminology. We selected standard names by criteria designed to maximize practicality for use in verbal communication as well as computerized knowledge management. The ontology of NeuroNames accommodates synonyms and homonyms of the standard terms in many languages. It defines complex structures as models composed of primary structures, which are defined in unambiguous operational terms. NeuroNames currently relates more than 16,000 names in eight languages to some 2,500 neuroanatomical concepts. The ontology is maintained in a relational database with three core tables: Names, Concepts and Models. BrainInfo uses NeuroNames to index information by structure, to interpret users' queries and to clarify terminology on remote web pages. NeuroNames is a resource vocabulary of the NLM's Unified Medical Language System (UMLS, 2011) and the basis for the brain regions component of NIFSTD (NeuroLex, 2011). The current version has been downloaded to hundreds of laboratories for indexing data and linking to BrainInfo, which attracts some 400 visitors/day, downloading 2,000 pages/day.


Assuntos
Armazenamento e Recuperação da Informação/métodos , Neuroanatomia , Terminologia como Assunto , Unified Medical Language System , Vocabulário Controlado , Internet , National Library of Medicine (U.S.) , Neurociências , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...