Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1302907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827158

RESUMO

Background: Sepsis is commonly associated with a sudden impairment of brain function, thus leading to significant rates of illness and mortality. The objective of this research was to integrate microbiome and metabolome to reveal the mechanism of microbiota-hippocampus-metabolites axis dysfunction in a mouse model of sepsis. Methods: A mouse model of sepsis was established via cecal ligation and puncture. The potential associations between the composition of the gut microbiota and metabolites in the hippocampus of mice with sepsis were investigated by combining 16S ribosomal RNA gene sequencing and ultra-high-performance liquid chromatography tandem mass spectrometry. Results: A total of 140 differential metabolites were identified in the hippocampal tissues of mice with sepsis when compared to those of control mice. These differential metabolites in mice with sepsis were not only associated with autophagy and serotonergic synapse, but also involved in the metabolism and synthesis of numerous amino acids. At the phylum level, the abundance of Bacteroidota was increased, while that of Firmicutes (Bacillota) was decreased in mice with sepsis. At the genus level, the abundance of Alistipes was increased, while that of Lachnospiraceae_NK4A136_group was decreased in mice with sepsis. The Firmicutes (Bacillota)/Bacteroidota (F/B) ratio was decreased in mice with sepsis when compared to that of control mice. Furthermore, the F/B ratio was positively correlated with 5'-methylthioadenosine, PC (18:3(9Z,12Z,15Z)/18:0) and curdione, and negatively correlated with indoxylsulfuric acid, corticosterone, kynurenine and ornithine. Conclusion: Analysis revealed a reduction in the F/B ratio in mice with sepsis, thus contributing to the disturbance of 5'-methylthioadenosine, curdione, PC (18:3(9Z,12Z,15Z)/18:0), corticosterone, ornithine, indoxylsulfuric acid and kynurenine; eventually, these changes led to hippocampus dysfunction. Our findings provide a new direction for the management of sepsis-induced hippocampus dysfunction.

2.
Diabetes Metab Syndr Obes ; 15: 3219-3229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276296

RESUMO

Background: Previous studies have reported that six transmembrane protein of prostate 2 (STAMP2) attenuates metabolic inflammation and insulin resistance in diabetes mellitus. However, the role of STAMP2 in the diabetic heart is still unclear. Methods: A diabetic rat cardiomyopathy model was established via intraperitoneal STZ injection. STAMP2 was overexpressed in the treatment group using adeno-associated virus. Rat heart diastolic function was measured using echocardiography and a left ventricular catheter, and cardiac interstitial fibrosis was detected by immunohistochemistry and histological staining. Insulin sensitivity and NF-κB expression were shown by Western blotting. NMRAL1 distribution was illustrated by immunofluorescence. Results: STAMP2 expression in the diabetic rat heart was reduced, and exogenous overexpression of STAMP2 improved glucose tolerance and insulin sensitivity and alleviated diastolic dysfunction and myocardial fibrosis. Furthermore, we found that NF-κB signaling is activated in the diabetic heart and that exogenous overexpression of STAMP2 promotes NMRAL1 translocation from the cytoplasm to the nucleus and inhibits p65 phosphorylation. Conclusion: STAMP2 attenuates cardiac dysfunction and insulin resistance in diabetic cardiomyopathy, likely by promoting NMRAL1 retranslocation and NF-κB signaling inhibition.

3.
J Vasc Res ; 59(2): 114-123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35124674

RESUMO

Cell death-inducing DFF45-like effector C (CIDEC) is involved in diet-induced adipose inflammation. Whether CIDEC plays a role in diabetic vascular inflammation remains unclear. A type 2 diabetic rat model was induced by high-fat diet and low-dose streptozotocin. We evaluated its characteristics by metabolic tests, Western blot analysis of CIDEC and C1q/tumor necrosis factor-related protein-3 (CTRP3) expression, and histopathological analysis of aortic tissues. The diabetic group exhibited elevated CIDEC expression, aortic inflammation, and remodeling. To further investigate the role of CIDEC in the pathogenesis of aortic inflammation, gene silencing was used. With CIDEC gene silencing, CTRP3 expression was restored, accompanied with amelioration of insulin resistance, aortic inflammation, and remodeling in diabetic rats. Thus, the silencing of CIDEC is potent in mediating the reversal of aortic inflammation and remodeling, indicating that CIDEC may be a potential therapeutic target for vascular complications in diabetes.


Assuntos
Diabetes Mellitus Experimental , Resistência à Insulina , Animais , Morte Celular , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Inflamação/genética , Proteínas/genética , Proteínas/metabolismo , Ratos
4.
Biochem Biophys Res Commun ; 579: 47-53, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34583195

RESUMO

Diabetic nephropathy (DN) is one of the most serious and major renal complications of diabetes. Previously, Six-transmembrane Protein of Prostate 2 (STAMP2) was reported to contribute to nutritional stress. The purpose of this study is to investigate whether overexpression of STAMP2 attenuates diabetic renal injuries in DN rats. We induced the DN rat model by high-fat diet and low-dose streptozotocin and evaluated the metabolite and urine albumin/creatinine. Recombinant adeno-associated virus vectors were injected for overexpression of STAMP2. Pathophysiologic and ultrastructure features of DN by histochemical stain and transmission electron microscope, autophagy-related proteins and signaling pathway by western blotting were assessed. We found the expression of STAMP2 was decreased and autophagy was blunted in DN rat kidneys. Overexpressing STAMP2 significantly ameliorated metabolic disturbance, insulin resistance, and specifically restoring diabetic renal injury. Furthermore, overexpressing STAMP2 improved the autophagy deficiency in DN rats, as revealed by changes in the expressions of Beclin1, p62, and LC3. Furthermore, STAMP2 overexpressing promoted autophagy by inhibiting the mTOR and activating the AMPK/SIRT1 signaling pathway. Our results suggested that STAMP2 overexpression attenuated renal injuries via upregulating autophagy in DN rats. STAMP2 overexpressing promoted autophagy may been involved with inhibition of the mTOR/ULK1 and activation of the AMPK/SIRT1 signaling pathway.


Assuntos
Autofagia , Nefropatias Diabéticas/metabolismo , Regulação da Expressão Gênica , Rim/lesões , Proteínas de Membrana/biossíntese , Oxirredutases/biossíntese , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/biossíntese , Diabetes Mellitus Experimental , Dieta Hiperlipídica , Vetores Genéticos , Córtex Renal/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuína 1/biossíntese , Estreptozocina , Serina-Treonina Quinases TOR/biossíntese , Ativação Transcricional , Regulação para Cima
5.
Exp Gerontol ; 119: 128-137, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30710682

RESUMO

BACKGROUND: Androgen has been implicated in aging-related cardiac remodeling, but its precise role in aging heart remains controversial. We aimed to investigate the role of testosterone in the development of aging-related cardiac remodeling and the mechanisms involved. METHODS: Wild type and Axl knockout mice (Axl-/-) were randomized into three groups: the young group (n = 30, 3 months old), the aging group (n = 30, 18 months old), the testosterone undecanoate treatment group (TU, n = 30, 18 months old). Mice in the TU group were given testosterone undecanoate (39 mg/kg) by subcutaneous injection on the back at fifteen-months-old, once a month, a total of three times. The old group received solvent reagent (corn oil) by the same method. RESULTS: The aging mice exhibited a decrease in serum testosterone, and Gas6 levels and an increase in apoptosis, and manifested cardiac fibrosis. Testosterone injection to wild type mice increased the levels of testosterone and Gas6 in serum and decreased cardiac apoptosis and fibrosis. Axl-/-mice receiving testosterone injection exhibited no obvious improvement in cardiac remodeling although the levels of testosterone and Gas6 in serum elevated. CONCLUSIONS: These data indicated that testosterone replacement therapy (TRT) alleviates cardiac fibrosis and apoptosis, at least in part by enhancing Gas6 expression. Moreover, deletion of Axl disables testosterone, which indicated that Axl is an important downstream regulator of testosterone. TRT would improve aging-related cardiac remolding via Gas6/Axl signaling pathway, implicating its therapeutic potential to treat aging-related heart disease.


Assuntos
Envelhecimento/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Miocárdio/patologia , Testosterona/análogos & derivados , Envelhecimento/sangue , Envelhecimento/patologia , Animais , Apoptose/efeitos dos fármacos , Fibrose , Coração/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Testosterona/administração & dosagem , Testosterona/sangue , Testosterona/deficiência , Proteína Tumoral 1 Controlada por Tradução
6.
Inflammation ; 41(3): 803-810, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29383542

RESUMO

Inflammation and oxidative stress are implicated in the pathogenesis of acute viral myocarditis (AVM). Ulinastantin (UTI), an inhibitor of serine protease widely used in treatment of pancreatitis and various inflammatory disorders, displays cardioprotective properties in experimental animals. Although the specific mechanism through which UTI regulates cardiac function is not well explored, evidence suggests that UTI might activate nuclear factor E2-related factor 2 (Nrf2) signaling. In this study, we investigated the role of Nrf2 in mediating UTI's cardioprotection in a mouse model of AVM. We found that UTI is an activator of Nrf2 signaling. It markedly increased Nrf2 nuclear translocation, Nrf2 transcription capacity, and the downstream protein expression. In addition, UTI possessed strong protective functions in coxsackievirus B3 (CVB3)-induced AVM. UTI treatment effectively reduced the cardiac damage, decreased the expression of inflammatory cytokines, and balanced oxidative stress via improving the activity of anti-oxidant and detoxifying enzymes. Even more impressively, UTI achieved its cardioprotective activities in an Nrf2-dependent manner. Taken together, our study has identified a novel pathway through which UTI exerts its cardioprotective functions and provides a molecular basis for UTI potential applications in the treatment of AVM and other inflammatory disorders.


Assuntos
Enterovirus Humano B/efeitos dos fármacos , Glicoproteínas/farmacologia , Miocardite/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Enterovirus Humano B/patogenicidade , Glicoproteínas/uso terapêutico , Inflamação/tratamento farmacológico , Camundongos , Miocardite/virologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...