Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687690

RESUMO

This article aims to investigate the feasibility of using discrete element software EDEM 2022.0 to simulate the trajectory of artificial marble patterns in a dual horizontal shaft mixer. Research was conducted on the mixing uniformity of particles in the mixing chamber, and the optimal speed range for particle mixing was established. By simulating the trajectory of pigment particles, the trajectories of the particles at different positions of the stirring paddle were obtained, and the trajectories were compared with the measured results. In the study of uniform particle mixing, the Lacey index at different speeds was compared, and the optimal speed range was established between 40 RPM and 60 RPM. Based on this, the particle trajectory simulation found that the motion trajectories of particles at different positions of the stirring paddle varied significantly. The particles in the stirring paddle rod exhibit a gradual trend, in which they gradually decrease as they approach the head of the stirring paddle. Finally, the feasibility of this method was established by comparing the simulated and actual patterns through proportional replication of the mixing process, and it was discovered that the two were similar.

2.
Bioinspir Biomim ; 18(5)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37611613

RESUMO

Quadruped robots have frequently appeared in various situations, including wilderness rescue, planetary exploration, and nuclear power facility maintenance. The quadruped robot with an active body joint has better environmental adaptability than one without body joints. However, it is difficult to guarantee the stability of the body joint quadruped robot when walking on rough terrain. Given the above issues, this paper proposed a gait control method for the body joint quadruped robot based on multi-constraint spatial coupling (MCSC) algorithm. The body workspace of the robot is divided into three subspaces, which are solved for different gaits, and then coupled to obtain the stable workspace of the body. A multi-layer central pattern generator model based on the Hopf oscillator is built to realize the generation and switching of walk and trot gaits. Then, combined with the MCSC area of the body, the reflex adjustment strategy on different terrains is established to adjust the body's posture in real time and realize the robot's stable locomotion. Finally, the robot prototype is developed to verify the effectiveness of the control method. The simulation and experiment results show that the proposed method can reduce the offset of the swing legs and the fluctuation of the body attitude angle. Furthermore, the quadruped robot is ensured to maintain stability by dynamically modifying its body posture. The relevant result can offer a helpful reference for the control of quadruped robots in complex environments.


Assuntos
Robótica , Marcha , Caminhada , Algoritmos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...