Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 114: 105081, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34153811

RESUMO

Selective inhibition of histone deacetylase 6 (HDAC6) has been emerged as a promising approach to cancer treatment. As a pivotal strategy for drug discovery,molecular hybridization was introduced in this study and a series of pyrrolo[2,1-c][1,4] benzodiazepine-3,11-diones (PBDs) based hydroxamic acids was rationally designed and synthesizedas novel selective HDAC6 inhibitors. Preliminary in vitro enzyme inhibition assay and structure-activity relationship (SAR) discussion confirmed our design strategy and met the expectation. Several of the compounds showed high potent against HDAC6 enzyme in vitro, and compound A7 with a long aliphatic linker was revealed to have the similar activity as the positive control tubastatin A. Further in vitro characterization of A7 demonstrates the metastasis inhibitory potency in MDA-MB-231 cell line and western blotting showed that A7 could induce the upregulation of Ac-α-tubulin, but not induce the excessive acetylation of histone H3, which indicated that the compound had HDAC6 targeting effect in MDA-MB-231 cells. In vivo study revealed that compound A7 has satisfactory inhibitory effects onliver and lung metastasis of breast cancer in mice. Molecular docking released that A7 could fit well with the receptor and interact with some key residues, which lays a foundation for further structural modifications to elucidate the interaction mode between compounds and target protein. This pharmacological investigation workflow provided a reasonable and reference methodto examine the pharmacological effects of inhibiting HDAC6 with a single molecule, either in vitro or in vivo. All of these results suggested that A7 is a promising lead compound that could lead to the further development of novel selective HDAC6 inhibitors for the treatment of tumor metastasis.


Assuntos
Antineoplásicos/farmacologia , Benzodiazepinonas/farmacologia , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzodiazepinonas/síntese química , Benzodiazepinonas/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
2.
Bioorg Chem ; 97: 103679, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32120077

RESUMO

Histone deacetylase 6 (HDAC6) has been demonstrated to play a major role in cell motility and aggresome formation, and HDAC6 inhibition is therefore considered as a promising epigenetic strategy for cancer treatment. At present, only a minority of compounds have been reported as HDAC6 inhibitors, so specific HDAC6 inhibitors with safety profile need to be discovered urgently. In this paper, HDAC6 inhibitors with diverse structures were used to generate the pharmacophore model by ligand-based method, which contained two hydrogen bond acceptors and two hydrophobic groups. A combined virtual screening based on pharmacophore model and molecular docking was adopted to screen potential HDAC6 inhibitors. Subsequently, the HDAC6 inhibitory activity of the hit compounds were evaluated using an in vitro enzyme binding inhibition assay. The experimental results illustrated that cefoperazone sodium had the strongest inhibitory effect on HDAC6 among the six screened compounds, and its IC50 value was 8.59 ± 1.06 µM. Cefoperazone sodium significantly catalyzed the hyperacetylation of α-tubulin but not histone H3, proving that cefoperazone sodium was a selective inhibitor of HDAC6. Since the expression of HDAC6 plays an important role in cancer metastasis, the effects of cefoperazone sodium on migration and invasion of human pancreatic cancer PANC-1 cells were further investigated by wound healing and transwell chamber assays. It was found that cefoperazone sodium could evidently inhibit the migration and invasion of PANC-1 cells. Furthermore, the binding pattern of inhibitor at the active site of the crystal structure was revealed by molecular docking, providing a reference value for the structural design and optimization of HDAC6 inhibitors. This study provides a systematic virtual screening approach for discovering HDAC6 active inhibitors, and by which the specific effect of cefoperazone sodium against HDAC6 was found, suggesting its potential application on cancer therapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Desacetilase 6 de Histona/química , Desacetilase 6 de Histona/metabolismo , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...