Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Cancer Res ; 30(10): 2097-2110, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38457288

RESUMO

PURPOSE: Clinical implications of neoadjuvant immunotherapy in patients with locally advanced but resectable head and neck squamous cell carcinoma (HNSCC) remain largely unexplored. PATIENTS AND METHODS: Patients with resectable HNSCC were randomized to receive a single dose of preoperative durvalumab (D) with or without tremelimumab (T) before resection, followed by postoperative (chemo)radiotherapy based on multidisciplinary discretion and 1-year D treatment. Artificial intelligence (AI)-powered spatial distribution analysis of tumor-infiltrating lymphocytes and high-dimensional profiling of circulating immune cells tracked dynamic intratumoral and systemic immune responses. RESULTS: Of the 48 patients enrolled (D, 24 patients; D+T, 24 patients), 45 underwent surgical resection per protocol (D, 21 patients; D+T, 24 patients). D±T had a favorable safety profile and did not delay surgery. Distant recurrence-free survival (DRFS) was significantly better in patients treated with D+T than in those treated with D monotherapy. AI-powered whole-slide image analysis demonstrated that D+T significantly reshaped the tumor microenvironment toward immune-inflamed phenotypes, in contrast with the D monotherapy or cytotoxic chemotherapy. High-dimensional profiling of circulating immune cells revealed a significant expansion of T-cell subsets characterized by proliferation and activation in response to D+T therapy, which was rare following D monotherapy. Importantly, expansion of specific clusters in CD8+ T cells and non-regulatory CD4+ T cells with activation and exhaustion programs was associated with prolonged DRFS in patients treated with D+T. CONCLUSIONS: Preoperative D±T is feasible and may benefit patients with resectable HNSCC. Distinct changes in the tumor microenvironment and circulating immune cells were induced by each treatment regimen, warranting further investigation.


Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de Cabeça e Pescoço , Terapia Neoadjuvante , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Masculino , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Pessoa de Meia-Idade , Feminino , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Idoso , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/uso terapêutico , Neoplasias de Cabeça e Pescoço/terapia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Terapia Neoadjuvante/métodos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Adulto , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos
2.
Breast Cancer Res ; 26(1): 31, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395930

RESUMO

BACKGROUND: Accurate classification of breast cancer molecular subtypes is crucial in determining treatment strategies and predicting clinical outcomes. This classification largely depends on the assessment of human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), and progesterone receptor (PR) status. However, variability in interpretation among pathologists pose challenges to the accuracy of this classification. This study evaluates the role of artificial intelligence (AI) in enhancing the consistency of these evaluations. METHODS: AI-powered HER2 and ER/PR analyzers, consisting of cell and tissue models, were developed using 1,259 HER2, 744 ER, and 466 PR-stained immunohistochemistry (IHC) whole-slide images of breast cancer. External validation cohort comprising HER2, ER, and PR IHCs of 201 breast cancer cases were analyzed with these AI-powered analyzers. Three board-certified pathologists independently assessed these cases without AI annotation. Then, cases with differing interpretations between pathologists and the AI analyzer were revisited with AI assistance, focusing on evaluating the influence of AI assistance on the concordance among pathologists during the revised evaluation compared to the initial assessment. RESULTS: Reevaluation was required in 61 (30.3%), 42 (20.9%), and 80 (39.8%) of HER2, in 15 (7.5%), 17 (8.5%), and 11 (5.5%) of ER, and in 26 (12.9%), 24 (11.9%), and 28 (13.9%) of PR evaluations by the pathologists, respectively. Compared to initial interpretations, the assistance of AI led to a notable increase in the agreement among three pathologists on the status of HER2 (from 49.3 to 74.1%, p < 0.001), ER (from 93.0 to 96.5%, p = 0.096), and PR (from 84.6 to 91.5%, p = 0.006). This improvement was especially evident in cases of HER2 2+ and 1+, where the concordance significantly increased from 46.2 to 68.4% and from 26.5 to 70.7%, respectively. Consequently, a refinement in the classification of breast cancer molecular subtypes (from 58.2 to 78.6%, p < 0.001) was achieved with AI assistance. CONCLUSIONS: This study underscores the significant role of AI analyzers in improving pathologists' concordance in the classification of breast cancer molecular subtypes.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Receptores de Estrogênio/metabolismo , Biomarcadores Tumorais/metabolismo , Inteligência Artificial , Variações Dependentes do Observador , Receptores de Progesterona/metabolismo , Receptor ErbB-2/metabolismo
3.
J Immunother Cancer ; 12(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355279

RESUMO

BACKGROUND: The inflamed immune phenotype (IIP), defined by enrichment of tumor-infiltrating lymphocytes (TILs) within intratumoral areas, is a promising tumor-agnostic biomarker of response to immune checkpoint inhibitor (ICI) therapy. However, it is challenging to define the IIP in an objective and reproducible manner during manual histopathologic examination. Here, we investigate artificial intelligence (AI)-based immune phenotypes capable of predicting ICI clinical outcomes in multiple solid tumor types. METHODS: Lunit SCOPE IO is a deep learning model which determines the immune phenotype of the tumor microenvironment based on TIL analysis. We evaluated the correlation between the IIP and ICI treatment outcomes in terms of objective response rates (ORR), progression-free survival (PFS), and overall survival (OS) in a cohort of 1,806 ICI-treated patients representing over 27 solid tumor types retrospectively collected from multiple institutions. RESULTS: We observed an overall IIP prevalence of 35.2% and significantly more favorable ORRs (26.3% vs 15.8%), PFS (median 5.3 vs 3.1 months, HR 0.68, 95% CI 0.61 to 0.76), and OS (median 25.3 vs 13.6 months, HR 0.66, 95% CI 0.57 to 0.75) after ICI therapy in IIP compared with non-IIP patients, respectively (p<0.001 for all comparisons). On subgroup analysis, the IIP was generally prognostic of favorable PFS across major patient subgroups, with the exception of the microsatellite unstable/mismatch repair deficient subgroup. CONCLUSION: The AI-based IIP may represent a practical, affordable, clinically actionable, and tumor-agnostic biomarker prognostic of ICI therapy response across diverse tumor types.


Assuntos
Inteligência Artificial , Neoplasias Encefálicas , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Estudos Retrospectivos , Biomarcadores Tumorais , Fenótipo , Microambiente Tumoral
4.
NPJ Precis Oncol ; 7(1): 124, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985785

RESUMO

Tumor-infiltrating lymphocytes (TIL) have been suggested as an important prognostic marker in colorectal cancer, but assessment usually requires additional tissue processing and interpretational efforts. The aim of this study is to assess the clinical significance of artificial intelligence (AI)-powered spatial TIL analysis using only a hematoxylin and eosin (H&E)-stained whole-slide image (WSI) for the prediction of prognosis in stage II-III colon cancer treated with surgery and adjuvant therapy. In this retrospective study, we used Lunit SCOPE IO, an AI-powered H&E WSI analyzer, to assess intratumoral TIL (iTIL) and tumor-related stromal TIL (sTIL) densities from WSIs of 289 patients. The patients with confirmed recurrences had significantly lower sTIL densities (mean sTIL density 630.2/mm2 in cases with confirmed recurrence vs. 1021.3/mm2 in no recurrence, p < 0.001). Additionally, significantly higher recurrence rates were observed in patients having sTIL or iTIL in the lower quartile groups. Risk groups defined as high-risk (both iTIL and sTIL in the lowest quartile groups), low-risk (sTIL higher than the median), or intermediate-risk (not high- or low-risk) were predictive of recurrence and were independently associated with clinical outcomes after adjusting for other clinical factors. AI-powered TIL analysis can provide prognostic information in stage II/III colon cancer in a practical manner.

5.
Head Neck ; 45(12): 3086-3095, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828867

RESUMO

BACKGROUND: This study analyzed the predictive value of artificial intelligence (AI)-powered tumor-infiltrating lymphocyte (TIL) analysis in recurrent or metastatic (R/M) adenoid cystic carcinoma (ACC) treated with axitinib. METHODS: Patients from a multicenter, prospective phase II trial evaluating axitinib efficacy in R/M ACC were included in this study. H&E whole-side images of archival tumor tissues were analyzed by Lunit SCOPE IO, an AI-powered spatial TIL analyzer. RESULTS: Twenty-seven patients were included in the analysis. The best response was stable disease, and the median progression-free survival (PFS) was 11.1 months (95% CI, 9.2-13.7 months). Median TIL densities in the cancer and surrounding stroma were 25.8/mm2 (IQR, 8.3-73.0) and 180.4/mm2 (IQR, 69.6-342.8), respectively. Patients with stromal TIL density >342.5/mm2 exhibited longer PFS (p = 0.012). CONCLUSIONS: Cancer and stromal area TIL infiltration were generally low in R/M ACC. Higher stromal TIL infiltration was associated with a longer PFS with axitinib treatment.


Assuntos
Carcinoma Adenoide Cístico , Humanos , Inteligência Artificial , Axitinibe/uso terapêutico , Biomarcadores , Carcinoma Adenoide Cístico/tratamento farmacológico , Carcinoma Adenoide Cístico/patologia , Linfócitos do Interstício Tumoral , Recidiva Local de Neoplasia/patologia , Estudos Prospectivos
6.
Diagnostics (Basel) ; 12(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36292028

RESUMO

Despite the importance of tumor-infiltrating lymphocytes (TIL) and PD-L1 expression to the immune checkpoint inhibitor (ICI) response, a comprehensive assessment of these biomarkers has not yet been conducted in neuroendocrine neoplasm (NEN). We collected 218 NENs from multiple organs, including 190 low/intermediate-grade NENs and 28 high-grade NENs. TIL distribution was derived from Lunit SCOPE IO, an artificial intelligence (AI)-powered hematoxylin and eosin (H&E) analyzer, as developed from 17,849 whole slide images. The proportion of intra-tumoral TIL-high cases was significantly higher in high-grade NEN (75.0% vs. 46.3%, p = 0.008). The proportion of PD-L1 combined positive score (CPS) ≥ 1 case was higher in high-grade NEN (85.7% vs. 33.2%, p < 0.001). The PD-L1 CPS ≥ 1 group showed higher intra-tumoral, stromal, and combined TIL densities, compared to the CPS < 1 group (7.13 vs. 2.95, p < 0.001; 200.9 vs. 120.5, p < 0.001; 86.7 vs. 56.1, p = 0.004). A significant correlation was observed between TIL density and PD-L1 CPS (r = 0.37, p < 0.001 for intra-tumoral TIL; r = 0.24, p = 0.002 for stromal TIL and combined TIL). AI-powered TIL analysis reveals that intra-tumoral TIL density is significantly higher in high-grade NEN, and PD-L1 CPS has a positive correlation with TIL densities, thus showing its value as predictive biomarkers for ICI response in NEN.

7.
ACS Appl Mater Interfaces ; 7(33): 18849-55, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26258806

RESUMO

We report an initiated chemical vapor deposition (iCVD) process to coat polyethylene (PE) separators in Li-ion batteries with a highly cross-linked, mechanically strong polymer, namely, polyhexavinyldisiloxane (pHVDS). The highly cross-linked but ultrathin pHVDS films can only be obtained by a vapor-phase process, because the pHVDS is insoluble in most solvents and thus infeasible with conventional solution-based methods. Moreover, even after the pHVDS coating, the initial porous structure of the separator is well preserved owing to the conformal vapor-phase deposition. The coating thickness is delicately controlled by deposition time to the level that the pore size decreases to below 7% compared to the original dimension. The pHVDS-coated PE shows substantially improved thermal stability and electrolyte wettability. After incubation at 140 °C for 30 min, the pHVDS-coated PE causes only a 12% areal shrinkage (versus 90% of the pristine separator). The superior wettability results in increased electrolyte uptake and ionic conductivity, leading to significantly improved rate performance. The current approach is applicable to a wide range of porous polymeric separators that suffer from thermal shrinkage and poor electrolyte wetting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...