Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2471, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513385

RESUMO

The design of a single complicated chiral ligand to well-promote each step of an asymmetric cascade reaction is sometimes a formidable challenge in transition metal catalysis. In this work, a highly regio- and enantioselective Ni-catalysed migratory hydroarylation relay process has been achieved with the combination of two simple ligands, one which accomplishes chain-walking and the other causing asymmetric arylation. This formal asymmetric C(sp3)-H arylation provides direct access to a wide range of structurally diverse chiral 1,1-diarylalkanes, a structural unit found in a number of bioactive molecules. The value of this strategy was further demonstrated by the Ni-catalysed migratory asymmetric 1,3-arylboration.


Assuntos
Elementos de Transição , Catálise , Ligantes , Estereoisomerismo
2.
J Am Chem Soc ; 143(48): 20064-20070, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34793680

RESUMO

Polysubstituted arenes are ubiquitous structures in a myriad of medicinal agents and complex molecules. Herein, we report a new catalytic blueprint that merges the modularity of nickel catalysis for bond formation with the ability to enable a rather elusive 1,4-hydride shift at arene sp2 C-H sites, thus allowing access to ipso/ortho-difunctionalized arenes from readily available aryl halides under mild conditions and exquisite selectivity profile.

3.
Nat Commun ; 12(1): 638, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504793

RESUMO

Enantiomerically pure chiral amines and related amide derivatives are privilege motifs in many pharmacologically active molecules. In comparison to the well-established hydroamination, the transition metal-catalysed asymmetric hydrofunctionalization of enamines provides a complementary approach for their construction. Here we report a NiH-catalysed enantio- and regioselective reductive hydroarylation of N-acyl enamines, allowing for the practical access to a broad range of structurally diverse, enantioenriched benzylamines under mild, operationally simple reaction conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA