Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 43(8): 1319-1325, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37154549

RESUMO

Climate change has resulted in an increase in drought severity in the species-rich tropical and subtropical forests of southern China. Exploring the spatiotemporal relationship between drought-tolerance trait and tree abundance provides a means to elucidate the impact of droughts on community assembly and dynamics. In this study, we measured the leaf turgor loss point (πtlp) for 399 tree species from three tropical forest plots and three subtropical forest plots. The plot area was 1 ha and tree abundance was calculated as total basal area per hectare according to the nearest community census data. The first aim of this study was to explore πtlp abundance relationships in the six plots across a range of precipitation seasonality. Additionally, three of the six plots (two tropical forests and one subtropical forest) had consecutive community censuses data (12-22 years) and the mortality ratios and abundance year slope of tree species were analyzed. The second aim was to examine whether πtlp is a predictor of tree mortality and abundance changes. Our results showed that tree species with lower (more negative) πtlp were more abundant in the tropical forests with relative high seasonality. However, πtlp was not related to tree abundance in the subtropical forests with low seasonality. Moreover, πtlp was not a good predictor of tree mortality and abundance changes in both humid and dry forests. This study reveals the restricted role of πtlp in predicting the response of forests to increasing droughts under climate change.


Assuntos
Resistência à Seca , Secas , China , Mudança Climática , Folhas de Planta
2.
Tree Physiol ; 43(8): 1307-1318, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37067918

RESUMO

Karst forests are habitats in which access to soil water can be challenging for plants. Therefore, safe and efficient xylem water transport and large internal water storage may benefit tree growth. In this study, we selected 22 tree species from a primary subtropical karst forest in southern China and measured their xylem anatomical traits, saturated water content (SWC), hydraulic conductivity (Ks) and embolism resistance (P50). Additionally, we monitored growth of diameter at breast height (DBH) in 440 individual trees of various sizes over three consecutive years. Our objective was to analyze the relationships between xylem structure, hydraulic efficiency, safety, water storage and growth of karst tree species. The results showed significant differences in structure but not in hydraulic traits between deciduous and evergreen species. Larger vessel diameter, paratracheal parenchyma and higher SWC were correlated with higher Ks. Embolism resistance was not correlated with the studied anatomical traits, and no tradeoff with Ks was observed. In small trees (5-15 cm DBH), diameter growth rate (DGR) was independent of hydraulic traits. In large trees (>15 cm DBH), higher Ks and more negative P50 accounted for higher DGR. From lower to greater embolism resistance, the size-growth relationship shifted from growth deceleration to acceleration with increasing tree size in eight of the 22 species. Our study highlights the vital contributions of xylem hydraulic efficiency and safety to growth rate and dynamics in karst tree species; therefore, we strongly recommend their integration into trait-based forest dynamic models.


Assuntos
Florestas , Árvores , Transporte Biológico , China , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...