Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2284, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145152

RESUMO

Recently, copper oxide (CuO) has drawn much attention as a promising material in visible light photodetection with its advantages in ease of nanofabrication. CuO allows a variety of nanostructures to be explored to enhance the optoelectrical performance such as photogenerated carriers scattering and bandgap engineering. However, previous researches neglect in-depth analysis of CuO's light interaction effects, restrictively using random orientation such as randomly arranged nanowires, single nanowires, and dispersed nanoparticles. Here, we demonstrate an ultra-high performance CuO visible light photodetector utilizing perfectly-aligned nanowire array structures. CuO nanowires with 300 nm-width critical dimension suppressed carrier transport in the dark state and enhanced the conversion of photons to carriers; additionally, the aligned arrangement of the nanowires with designed geometry improved the light absorption by means of the constructive interference effect. The proposed nanostructures provide advantages in terms of dark current, photocurrent, and response time, showing unprecedentedly high (state-of-the-art) optoelectronic performance, including high values of sensitivity (S = 172.21%), photo-responsivity (R = 16.03 A/W, λ = 535 nm), photo-detectivity (D* = 7.78 × 1011 Jones), rise/decay time (τr/τd = 0.31 s/1.21 s).

2.
Sci Rep ; 9(1): 7334, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089236

RESUMO

Recently, copper oxide (CuO)-based visible-light photodetectors have attracted great interest due to their narrow bandgap (1.2 eV), low cost, and ease of fabrication. However, there has been insufficient theoretical analysis and study of CuO-based photodetectors, resulting in inferior performance in terms of responsivity, detectivity, and response speed. This work develops a method to enhance the performance of CuO photodetectors by engineering a grain structure based on a newly-developed theoretical model. In the developed theoretical grain-structure model, the grain size and the connections between grains are considered because they can strongly affect the optoelectronic characteristics of CuO photodetectors. Based upon the proposed model, the engineered CuO device achieves enhanced optoelectronic performance. The engineered device shows high responsivity of 15.3 A/W and detectivity of 1.08 × 1011 Jones, which are 18 and 50 times better than those of the unoptimized device, and also shows fast rising and decaying response speeds of 0.682 s and 1.77 s, respectively. In addition, the proposed method is suitable for the mass-production of performance-enhanced, reliable photodetectors. By using a conventional semiconductor fabrication process, a photodetector-array is demonstrated on a 4-inch wafer. The fabricated devices show uniform, high, and stable optoelectronic performance for a month.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...