Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Elife ; 132024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324575

RESUMO

Fibro-adipogenic progenitors (FAPs) are muscle-resident mesenchymal progenitors that can contribute to muscle tissue homeostasis and regeneration, as well as postnatal maturation and lifelong maintenance of the neuromuscular system. Recently, traumatic injury to the peripheral nerve was shown to activate FAPs, suggesting that FAPs can respond to nerve injury. However, questions of how FAPs can sense the anatomically distant peripheral nerve injury and whether FAPs can directly contribute to nerve regeneration remained unanswered. Here, utilizing single-cell transcriptomics and mouse models, we discovered that a subset of FAPs expressing GDNF receptors Ret and Gfra1 can respond to peripheral nerve injury by sensing GDNF secreted by Schwann cells. Upon GDNF sensing, this subset becomes activated and expresses Bdnf. FAP-specific inactivation of Bdnf (Prrx1Cre; Bdnffl/fl) resulted in delayed nerve regeneration owing to defective remyelination, indicating that GDNF-sensing FAPs play an important role in the remyelination process during peripheral nerve regeneration. In aged mice, significantly reduced Bdnf expression in FAPs was observed upon nerve injury, suggesting the clinical relevance of FAP-derived BDNF in the age-related delays in nerve regeneration. Collectively, our study revealed the previously unidentified role of FAPs in peripheral nerve regeneration, and the molecular mechanism behind FAPs' response to peripheral nerve injury.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Células-Tronco Mesenquimais , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Traumatismos dos Nervos Periféricos/metabolismo , Camundongos , Células-Tronco Mesenquimais/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Células de Schwann/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-ret/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética
2.
Nucl Med Mol Imaging ; 51(3): 240-246, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28878850

RESUMO

PURPOSE: We aimed to evaluate the difference in fluorodeoxyglucose (FDG) uptake in sedated healthy subjects after they underwent esophagogastroduodenoscopy (EGD) and colonoscopy procedures. METHODS: The endoscopy group (n = 29) included healthy subjects who underwent screening via F-18 FDG positron emission tomography/computed tomography (PET/CT) after an EGD and/or colonoscopy under sedation on the same day. The control group (n = 35) included healthy subjects who underwent screening via PET/CT only. FDG uptake in the tongue, uvula, epiglottis, vocal cords, esophagus, stomach, duodenum, liver, cecum, colon, anus, and muscle were compared between the two groups. RESULTS: Maximum standardized uptake value (SUVmax) in the tongue, pharynx, larynx, and esophagus did not significantly differ between the endoscopy and control groups. In contrast, mean SUVmax in the whole stomach was 18 % higher in the endoscopy group than in the control group (SUVmax: 2.96 vs. 2.51, P = 0.010). In the lower gastrointestinal track, SUVmax from the cecum to the rectum was not significantly different between the two groups, whereas SUVmax in the anus was 20 % higher in the endoscopy group than in the control group (SUVmax: 4.21 vs. 3.50, P = 0.002). SUVmax in the liver and muscle was not significantly different between the two groups. Mean volume of the stomach and mean cross section of the colon was significantly higher in the endoscopy group than in the control group (stomach: 313.28 cm3 vs. 209.93 cm3, P < 0.001, colon: 8.82 cm2 vs. 5.98 cm2, P = 0.001). CONCLUSIONS: EGD and colonoscopy under sedation does not lead to significant differences in SUVmax in most parts of the body. Only gastric FDG uptake in the EGD subjects and anal FDG uptake in the colonoscopy subjects was higher than uptake in those regions in the control subjects.

3.
J Cardiovasc Ultrasound ; 17(4): 148-50, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20661342

RESUMO

Pedunculated thrombus in the aortic arch that is associated with cerebral infarction is very rare requires prompt diagnosis and treatment to prevent occurrence of another devastating complication. Transesophageal echocardiography is useful for detecting source of embolism including aortic thrombi. The treatment options of aortic thrombi involves anticoagulation, thrombolysis, thromboaspiration, and thrombectomy. Here we report a case of huge thrombus in the aortic arch, resulting in acute multifocal cerebellar embolic infarct in patient without any risk factors for vascular thrombosis. Thrombi in the aortic arch were diagnosed by transesophageal echocardiography and treated with anticoagulants successfully.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA