Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(20): eadl5056, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748785

RESUMO

Gels made of telechelic polymers connected by reversible cross-linkers are a versatile design platform for biocompatible viscoelastic materials. Their linear response to a step strain displays a fast, near-exponential relaxation when using low-valence cross-linkers, while larger supramolecular cross-linkers bring about much slower dynamics involving a wide distribution of timescales whose physical origin is still debated. Here, we propose a model where the relaxation of polymer gels in the dilute regime originates from elementary events in which the bonds connecting two neighboring cross-linkers all disconnect. Larger cross-linkers allow for a greater average number of bonds connecting them but also generate more heterogeneity. We characterize the resulting distribution of relaxation timescales analytically and accurately reproduce stress relaxation measurements on metal-coordinated hydrogels with a variety of cross-linker sizes including ions, metal-organic cages, and nanoparticles. Our approach is simple enough to be extended to any cross-linker size and could thus be harnessed for the rational design of complex viscoelastic materials.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37916735

RESUMO

The design of soft magnetic hydrogels with high concentrations of magnetic particles is complicated by weak retention of the iron oxide particles in the hydrogel scaffold. Here, we propose a design strategy that circumvents this problem through the in situ mineralization of iron oxide nanoparticles within polymer hydrogels functionalized with strongly iron-coordinating nitrocatechol groups. The mineralization process facilitates the synthesis of a high concentration of large iron oxide nanoparticles (up to 57 wt % dry mass per single cycle) in a simple one-step process under ambient conditions. The resulting hydrogels are soft (kPa range) and viscoelastic and exhibit strong magnetic actuation. This strategy offers a pathway for the energy-efficient design of soft, mechanically robust, and magneto-responsive hydrogels for biomedical applications.

3.
Soft Matter ; 19(41): 7885-7906, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37846782

RESUMO

Viscoelastic stress relaxation is a basic characteristic of soft matter systems such as colloids, gels, and biological networks. Although the Maxwell model of linear viscoelasticity provides a classical description of stress relaxation, it is often not sufficient for capturing the complex relaxation dynamics of soft matter. In this Tutorial, we introduce and discuss the physics of non-Maxwellian linear stress relaxation as observed in soft materials, the ascribed origins of this effect in different systems, and appropriate models that can be used to capture this relaxation behavior. We provide a basic toolkit that can assist the understanding and modeling of the mechanical relaxation of soft materials for diverse applications.

4.
Macromol Rapid Commun ; 44(17): e2300077, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37337912

RESUMO

Histidine-M2+ coordination bonds are a recognized bond motif in biogenic materials with high hardness and extensibility, which has led to growing interest in their use in soft materials for mechanical function. However, the effect of different metal ions on the stability of the coordination complex remains poorly understood, complicating their implementation in metal-coordinated polymer materials. Herein, rheology experiments and density functional theory calculations are used to characterize the stability of coordination complexes and establish the binding hierarchy of histamine and imidazole with Ni2+ , Cu2+ , and Zn2+ . It is found that the binding hierarchy is driven by the specific affinity of the metal ions to different coordination states, which can be macroscopically tuned by changing the metal-to-ligand stoichiometry of the metal-coordinated network. These findings facilitate the rational selection of metal ions for optimizing the mechanical properties of metal-coordinated materials.


Assuntos
Complexos de Coordenação , Histamina , Metais/química , Imidazóis/química , Histidina/química , Íons
5.
Proc Natl Acad Sci U S A ; 120(4): e2213160120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649435

RESUMO

Incorporating dynamic metal-coordination bonds as cross-links into synthetic materials has become attractive not only to improve self-healing and toughness, but also due to the tunability of metal-coordination bonds. However, a priori determination of bond lifetime of metal-coordination complexes, especially important in the rational design of metal-coordinated materials with prescribed properties, is missing. We report an empirical relationship between the energy landscape of metal-coordination bonds, simulated via metadynamics, and the resulting macroscopic relaxation time in ideal metal-coordinated hydrogels. Importantly, we expand the Arrhenius relationship between the macroscopic hydrogel relaxation time and metal-coordinate bond activation energy to include width and landscape ruggedness identified in the simulated energy landscapes. Using biologically relevant Ni2+-nitrogen coordination complexes as a model case, we demonstrate that the quantitative relationship developed from histidine-Ni2+ and imidazole-Ni2+ complexes can predict the average relaxation times of other Ni2+-nitrogen coordinated networks. We anticipate the quantitative relationship presented here to be a starting point for the development of more sophisticated models that can predict relaxation timescales of materials with programmable viscoelastic properties.


Assuntos
Complexos de Coordenação , Hidrogéis , Complexos de Coordenação/química , Metais
6.
Proc Natl Acad Sci U S A ; 119(30): e2201566119, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858447

RESUMO

Arrested soft materials such as gels and glasses exhibit a slow stress relaxation with a broad distribution of relaxation times in response to linear mechanical perturbations. Although this macroscopic stress relaxation is an essential feature in the application of arrested systems as structural materials, consumer products, foods, and biological materials, the microscopic origins of this relaxation remain poorly understood. Here, we elucidate the microscopic dynamics underlying the stress relaxation of such arrested soft materials under both quiescent and mechanically perturbed conditions through X-ray photon correlation spectroscopy. By studying the dynamics of a model associative gel system that undergoes dynamical arrest in the absence of aging effects, we show that the mean stress relaxation time measured from linear rheometry is directly correlated to the quiescent superdiffusive dynamics of the microscopic clusters, which are governed by a buildup of internal stresses during arrest. We also show that perturbing the system via small mechanical deformations can result in large intermittent fluctuations in the form of avalanches, which give rise to a broad non-Gaussian spectrum of relaxation modes at short times that is observed in stress relaxation measurements. These findings suggest that the linear viscoelastic stress relaxation in arrested soft materials may be governed by nonlinear phenomena involving an interplay of internal stress relaxations and perturbation-induced intermittent avalanches.

7.
Nat Commun ; 12(1): 667, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510173

RESUMO

Biological organic-inorganic materials remain a popular source of inspiration for bioinspired materials design and engineering. Inspired by the self-assembling metal-reinforced mussel holdfast threads, we tested if metal-coordinate polymer networks can be utilized as simple composite scaffolds for direct in situ crosslink mineralization. Starting with aqueous solutions of polymers end-functionalized with metal-coordinating ligands of catechol or histidine, here we show that inter-molecular metal-ion coordination complexes can serve as mineral nucleation sites, whereby significant mechanical reinforcement is achieved upon nanoscale particle growth directly at the metal-coordinate network crosslink sites.


Assuntos
Bivalves/química , Reagentes de Ligações Cruzadas/química , Hidrogéis/química , Metais/química , Minerais/química , Polímeros/química , Animais , Catecóis/química , Ferro/química , Microscopia Eletrônica de Transmissão , Nanocompostos/química , Nanocompostos/ultraestrutura , Espalhamento a Baixo Ângulo , Análise Espectral Raman , Difração de Raios X
8.
ACS Nano ; 14(12): 17018-17027, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33289544

RESUMO

Patchy particle interactions are predicted to facilitate the controlled self-assembly and arrest of particles into phase-stable and morphologically tunable "equilibrium" gels, which avoids the arrested phase separation and subsequent aging that is typically observed in traditional particle gels with isotropic interactions. Despite these promising traits of patchy particle interactions, such tunable equilibrium gels have yet to be realized in the laboratory due to experimental limitations associated with synthesizing patchy particles in high yield. Here, we introduce a supramolecular metal-coordination platform consisting of metallic nanoparticles linked by telechelic polymer chains, which validates the predictions associated with patchy particle interactions and facilitates the design of equilibrium particle hydrogels through limited valency interactions. We demonstrate that the interaction valency and self-assembly of the particles can be effectively controlled by adjusting the relative concentration of polymeric linkers to nanoparticles, which enables the gelation of patchy particle hydrogels with programmable local anisotropy, morphology, and low mechanical percolation thresholds. Moreover, by crowding the local environment around the patchy particles with competing interactions, we introduce an independent method to control the self-assembly of the nanoparticles, thereby enabling the design of highly anisotropic particle hydrogels with substantially reduced percolation thresholds. We thus establish a canonical platform that facilitates multifaceted control of the self-assembly of the patchy nanoparticles en route to the design of patchy particle gels with tunable valencies, morphologies, and percolation thresholds. These advances lay important foundations for further fundamental studies of patchy particle systems and for designing tunable gel materials that address a wide range of engineering applications.

9.
Sci Adv ; 5(1): eaau8528, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30746464

RESUMO

The emerging applications of hydrogels in devices and machines require hydrogels to maintain robustness under cyclic mechanical loads. Whereas hydrogels have been made tough to resist fracture under a single cycle of mechanical load, these toughened gels still suffer from fatigue fracture under multiple cycles of loads. The reported fatigue threshold for synthetic hydrogels is on the order of 1 to 100 J/m2. We propose that designing anti-fatigue-fracture hydrogels requires making the fatigue crack encounter and fracture objects with energies per unit area much higher than that for fracturing a single layer of polymer chains. We demonstrate that the controlled introduction of crystallinity in hydrogels can substantially enhance their anti-fatigue-fracture properties. The fatigue threshold of polyvinyl alcohol (PVA) with a crystallinity of 18.9 weight % in the swollen state can exceed 1000 J/m2.

10.
Soft Matter ; 15(3): 359-370, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30421764

RESUMO

The stiffening of polymers near inorganic fillers plays an important role in strengthening polymer nanocomposites, and recent advances in metrology have allowed us to sample such effects using local mechanical measurement techniques such as nanoindentation and atomic force microscopy. A general understanding of temperature and confinement effects on the measured stiffness gradient length-scale ξint is lacking however, which convolutes molecular interpretation of local property measurements. Using coarse-grained molecular dynamics and finite element nanoindentation simulations, we show that the measured ξint increases with temperature in highly confined polymer systems, a dependence which acts in the opposite direction in systems with low confinement. These disparate trends are closely related to the polymer's viscoelastic state and the resulting changes in incompressibility and dissipative ability as the polymer transitions from glassy to rubbery. At high temperatures above the glass transition temperature, a geometrically confined system restricts the viscous dissipation of the applied load by the increasingly incompressible polymer. The indentation causes a dramatic build-up of hydrostatic pressure near the confining surface, which contributes to an enlarged measurement of ξint. By contrast, a less-confined system allows the pressure to dissipate via intermolecular motion, thus lowering the measured ξint with increased temperature above the glass transition temperature. These findings suggest that the well-established thin film-nancomposite analogy for polymer mobility near interfaces can be convoluted when measuring local mechanical properties, as the viscoelastic state and geometric confinement of the polymer can affect the nanomechanical response during indentation purely from continuum effects.

11.
J Phys Chem B ; 122(6): 2040-2045, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29400063

RESUMO

Coarse-grained modeling achieves the enhanced computational efficiency required to model glass-forming materials by integrating out "unessential" molecular degrees of freedom, but no effective temperature transferable coarse-graining method currently exists to capture dynamics. We address this fundamental problem through an energy-renormalization scheme, in conjunction with the localization model of relaxation relating the Debye-Waller factor ⟨u2⟩ to the structural relaxation time τ. Taking ortho-terphenyl as a model small-molecule glass-forming liquid, we show that preserving ⟨u2⟩ (at picosecond time scale) under coarse-graining by renormalizing the cohesive interaction strength allows for quantitative prediction of both short- and long-time dynamics covering the entire temperature range of glass formation. Our findings provide physical insights into the dynamics of cooled liquids and make progress for building temperature-transferable coarse-grained models that predict key properties of glass-forming materials.

12.
Artigo em Inglês | MEDLINE | ID: mdl-30996476

RESUMO

Developing temperature transferable coarse-grained (CG) models is essential for the computational prediction of polymeric glass-forming (GF) material behavior, but their dynamics are often greatly altered from those of all-atom (AA) models mainly because of the reduced fluid configurational entropy under coarse-graining. To address this issue, we have recently introduced an energy renormalization (ER) strategy that corrects the activation free energy of the CG polymer model by renormalizing the cohesive interaction strength ε as a function of temperature T, i.e., ε(T), thus semiempirically preserving the T-dependent dynamics of the AA model. Here we apply our ER method to consider-in addition to T-dependency-the frequency f-dependent polymer viscoelasticity. Through smallamplitude oscillatory shear molecular dynamics simulations, we show that changing the imposed oscillation f on the CG systems requires changes in ε values (i.e., ε(T, f)) to reproduce the AA viscoelasticity. By accounting for the dynamic fragility of polymers as a material parameter, we are able to predict ε(T, f) under coarse-graining in order to capture the AA viscoelasticity, and consequently the activation energy, across a wide range of T and f in the GF regime. Specifically, we showcase our achievements on two representative polymers of distinct fragilities, polybutadiene (PB) and polystyrene (PS), and show that our CG models are able to sample viscoelasticity up to the megahertz regime, which approaches state-of-the-art experimental resolutions, and capture results sampled via AA simulations and prior experiments.

13.
J Chem Phys ; 146(20): 203311, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28571359

RESUMO

Recent studies on glass-forming polymers near interfaces have emphasized the importance of molecular features such as chain stiffness, side-groups, molecular packing, and associated changes in fragility as key factors that govern the magnitude of Tg changes with respect to the bulk in polymer thin films. However, how such molecular features are coupled with substrate and free surface effects on Tg in thin films remains to be fully understood. Here, we employ a chemically specific coarse-grained polymer model for methacrylates to investigate the role of side-group volume on glass formation in bulk polymers and supported thin films. Our results show that bulkier side-groups lead to higher bulk Tg and fragility and are associated with a pronounced free surface effect on overall Tg depression. By probing local Tg within the films, however, we find that the polymers with bulkier side-groups experience a reduced confinement-induced increase in local Tg near a strongly interacting substrate. Further analyses indicate that this is due to the packing frustration of chains near the substrate interface, which lowers the attractive interactions with the substrate and thus lessens the surface-induced reduction in segmental mobility. Our results reveal that the size of the polymer side-group may be a design element that controls the confinement effects induced by the free surface and substrates in supported polymer thin films. Our analyses provide new insights into the factors governing polymer dynamics in bulk and confined environments.

14.
Artigo em Inglês | MEDLINE | ID: mdl-30996475

RESUMO

The bottom-up prediction of the properties of polymeric materials based on molecular dynamics simulation is a major challenge in soft matter physics. Coarse-grained (CG) models are often employed to access greater spatiotemporal scales required for many applications, but these models normally experience significantly altered thermodynamics and highly accelerated dynamics due to the reduced number of degrees of freedom upon coarse-graining. While CG models can be calibrated to meet certain properties at particular state points, there is unfortunately no temperature transferable and chemically specific coarse-graining method that allows for modeling of polymer dynamics over a wide temperature range. Here, we pragmatically address this problem by "correcting" for deviations in activation free energies that occur upon coarse-graining the dynamics of a model polymeric material (polystyrene). In particular, we propose a new strategy based on concepts drawn from the Adam-Gibbs (AG) theory of glass formation. Namely we renormalize the cohesive interaction strength and effective interaction length-scale parameters to modify the activation free energy. We show that this energy-renormalization method for CG modeling allows accurate prediction of atomistic dynamics over the Arrhenius regime, the non-Arrhenius regime of glass formation, and even the non-equilibrium glassy regime, thus allowing for the predictive modeling of dynamic properties of polymer over the entire range of glass formation. Our work provides a practical scheme for establishing temperature transferable coarse-grained models for predicting and designing the properties of polymeric materials.

15.
ACS Macro Lett ; 5(4): 481-486, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35607230

RESUMO

Despite having very similar bulk properties such as glass-transition temperature (Tg), density, and fragility, polystyrene (PS) and poly(methyl methacrylate) (PMMA) exhibit characteristically different Tg depression in free-standing ultrathin films due to free surface effects. Here we explain this difference using our recently established chemistry-specific coarse-grained (CG) models for these two polymers. Models capture the dissimilar scaling of Tg with free-standing film thickness as seen in experiments and enable us to quantify the size of the regions near free surfaces over which chain relaxation exhibits differences from bulk. Most interestingly, vibrational density of states (VDOS) analysis uncovers a relationship between the amplitude of side-chain fluctuations, associated with side-chain flexibility and Tg-nanoconfinement. We discover that increasing backbone to side-chain mass ratio in CG models increases the amplitude of side-chain fluctuations and suppresses the free-surface effect on Tg. We show that mass distribution and side-chain flexibility are central to explain dissimilar free surface effects on PS and PMMA. Our model predictions are further corroborated by experimental evidence showing the role of mass distribution in styrene thin films. Our study ascertains the significance of molecular characteristics on nanoconfinement and highlights the ability for chemistry-specific CG models to explore the thermomechanical properties of polymer thin films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...