Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(17): 7980-7990, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37067237

RESUMO

In this study, a temperature-insensitive strain sensor that detects only the strain without responding to the temperature was designed. The transport mechanism and associated temperature coefficient of resistance (TCR) of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin film were modified through secondary doping with dimethyl sulfoxide (DMSO). Upon DMSO-doping, the carrier transport mechanism of the PEDOT:PSS thin film transitioned from hopping to band-like transport, with a morphological change. At the DMSO doping level, which caused the critical point of the transport transition, the resistance of the thin film was maintained with a change in temperature. Consequently, the TCR of the optimized PEDOT:PSS thin film was less than 9 × 10-5 K-1, which is 102 times lower than that of the as-prepared films. The carrier mobility of the PEDOT:PSS thin film was effectively improved with the morphological change due to DMSO doping and was investigated through combinational analysis. Ultimately, the wearable strain sensor prepared using the optimized PEDOT:PSS thin film responded stably to the applied strain with a gauge factor of 2 and exhibited excellent temperature anti-interference.

2.
ACS Appl Mater Interfaces ; 15(2): 2852-2860, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36608257

RESUMO

Conjugated polymer-based energy-harvesting devices hold distinctive advantages in terms of low toxicity, high flexibility, and capability of large-area integration at low cost for sustainable development. An organic thermoelectric (OTE) device has been considered one of the promising energy-harvesting candidates in recent years because it can efficiently convert low-temperature waste heat into electricity over its inorganic counterparts. However, a cruel irony is that environmentally toxic solvents and acids are utilized for fabrication and performance improvement of the OTE devices, retarding the development and use of genuinely green energy-harvesting. Here, we present eco-friendly, non-toxic strategies for a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based high-performance OTE device by incorporating a nature-abundant material, vitamin C (VC), as an additive. We found that the intrinsic polar nature and reducing ability of VC induce synergy effects of microstructure alignment with PSS removal and dedoping of PEDOT, leading to simultaneous enhancement of the electrical conductivity (>400 S cm-1) and the Seebeck coefficient (>30 µV K-1) and a resultant high thermoelectric power factor of 51.8 µW m-1 K-2. In addition, inspired by the eco-friendly fabrication process, we further demonstrated a transient OTE device, which can be fully degraded with naturally occurring substances, by fabricating it on a bio-based cellulose acetate substrate. We believe that our eco-friendly strategies from fabrication to disposal of the OTE can be applied to the development of high-performance, wearable, and bio-compatible OTE devices with minimal waste and further trigger the research on genuinely green thermal energy harvesting.

3.
RSC Adv ; 11(36): 22327-22333, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35480785

RESUMO

A monolithic integration of high-performance soft electronic modules into various fabric materials has enabled a paradigm shift in wearable textile electronics. However, the current textile electronics have struggled against fatigue under repetitive deformation due to the absence of materials and structural design strategies for imparting electrical and mechanical robustness to individual fibers. Here, we report a mechanically and electrically durable, stretchable electronic textile (MED-ET) enabled by a precisely controlled diffusion of tough self-healing stretchable inks into fibers and an adoption of the kirigami-inspired design. Remarkably, the conductive percolative pathways in the fabric of MED-ET even under a harshly deformed environment were stably maintained due to an electrical recovery phenomenon which originates from the spontaneous rearrangement of Ag flakes in the self-healing polymer matrix. Specifically, such a unique property enabled damage-resistant performance when repetitive deformation and scratch were applied. In addition, the kirigami-inspired design was capable of efficiently dissipating the accumulated stress in the conductive fabric during stretching, thereby providing high stretchability (a tensile strain of 300%) without any mechanical fracture or electrical malfunction. Finally, we successfully demonstrate various electronic textile applications such as stretchable micro-light-emitting diodes (Micro-LED), electromyogram (EMG) monitoring and all-fabric thermoelectric devices (F-TEG).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...