Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Prolif ; 53(3): e12774, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32034930

RESUMO

OBJECTIVES: Postflight orthostatic intolerance has been regarded as a major adverse effect after microgravity exposure, in which cerebrovascular adaptation plays a critical role. Our previous finding suggested that dedifferentiation of vascular smooth muscle cells (VSMCs) might be one of the key contributors to cerebrovascular adaptation under simulated microgravity. This study was aimed to confirm this concept and elucidate the underlying mechanisms. MATERIALS AND METHODS: Sprague Dawley rats were subjected to 28-day hindlimb-unloading to simulate microgravity exposure. VSMC dedifferentiation was evaluated by ultrastructural analysis and contractile/synthetic maker detection. The role of T-type CaV 3.1 channel was revealed by assessing its blocking effects. MiR-137 was identified as the upstream of CaV 3.1 channel by luciferase assay and investigated by gain/loss-of-function approaches. Calcineurin/nuclear factor of activated T lymphocytes (NFAT) pathway, the downstream of CaV 3.1 channel, was investigated by detecting calcineurin activity and NFAT nuclear translocation. RESULTS: Simulated microgravity induced the dedifferentiation and proliferation in rat cerebral VSMCs. T-type CaV 3.1 channel promoted the dedifferentiation and proliferation of VSMC. MiR-137 and calcineurin/NFATc3 pathway were the upstream and downstream signalling of T-type CaV 3.1 channel in modulating the dedifferentiation and proliferation of VSMCs, respectively. CONCLUSIONS: The present work demonstrated that miR-137 and its target T-type CaV 3.1 channel modulate the dedifferentiation and proliferation of rat cerebral VSMCs under simulated microgravity by regulating calcineurin/NFATc3 pathway.


Assuntos
Calcineurina/metabolismo , Canais de Cálcio Tipo T/metabolismo , Artérias Cerebrais/citologia , MicroRNAs/metabolismo , Miócitos de Músculo Liso/citologia , Fatores de Transcrição NFATC/metabolismo , Animais , Encéfalo/irrigação sanguínea , Canais de Cálcio Tipo T/genética , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Artérias Cerebrais/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Miócitos de Músculo Liso/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Simulação de Ausência de Peso
2.
Int J Mol Sci ; 20(16)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416128

RESUMO

The functional and structural adaptations in cerebral arteries could be one of the fundamental causes in the occurrence of orthostatic intolerance after space flight. In addition, emerging studies have found that many cardiovascular functions exhibit circadian rhythm. Several lines of evidence suggest that space flight might increase an astronaut's cardiovascular risks by disrupting circadian rhythm. However, it remains unknown whether microgravity disrupts the diurnal variation in vascular contractility and whether microgravity impacts on circadian clock system. Sprague-Dawley rats were subjected to 28-day hindlimb-unweighting to simulate the effects of microgravity on vasculature. Cerebrovascular contractility was estimated by investigating vasoconstrictor responsiveness and myogenic tone. The circadian regulation of CaV1.2 channel was determined by recording whole-cell currents, evaluating protein and mRNA expressions. Then the candidate miRNA in relation with Ca2+ signal was screened. Lastly, the underlying pathway involved in circadian regulation of cerebrovascular contractility was determined. The major findings of this study are: (1) The clock gene BMAL1 could induce the expression of miR-103, and in turn modulate the circadian regulation of CaV1.2 channel in rat cerebral arteries at post-transcriptional level; and (2) simulated microgravity disrupted intrinsic diurnal oscillation in rat cerebrovascular contractility by altering circadian regulation of BMAL1/miR-103/CaV1.2 signal pathway.


Assuntos
Fatores de Transcrição ARNTL/genética , Canais de Cálcio Tipo L/metabolismo , Circulação Cerebrovascular/genética , Ritmo Circadiano , MicroRNAs/genética , Vasoconstrição/genética , Ausência de Peso , Fatores de Transcrição ARNTL/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Masculino , Modelos Biológicos , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA