Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 164: 27-36, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673719

RESUMO

It has been a huge challenge to obtain simultaneously excellent mechanical strength and desirable multifunctionality from the cellulose nanocrystals (CNC) based food packing materials. In this work, we demonstrated a hydrogen bonding tailoring strategy that can produce CNC/lignin films with UV blocking and antioxidant activity, while bypassing the loss of mechanical strength. Using a hyperbranched polyester, lignin was first functionalized to increase the amount of hydroxyl groups, thereby increasing the intermolecular interactions. By assembling the polyester modified lignin (H-lignin) into CNC matrix, the hydrogen bonding crosslinks between the H-lignin and CNC chains were successfully promoted, resulting in the CNC composites with the significantly improved mechanical strength, UV blocking and antioxidant activity. The phenolic structure and the hydrogen donation of H-lignin also endowed the resulting CNC composites with excellent UV blocking and antioxidant activity. The experimental results indicated that the H-lignin could bring about 34% and 63% increase in tensile strength and Young's modulus, respectively, higher than the reported ones. The CNC-based composites showed better thermal stability and improved crystallinity property. The H-lignin provides a new insight into the multifunctional exploration of CNC-based composite. This work opens a new avenue for the next generation's biodegradable food packing materials from cellulose-sourced composites.


Assuntos
Antioxidantes/química , Celulose/química , Embalagem de Alimentos , Lignina/química , Manufaturas , Nanopartículas/química , Biodegradação Ambiental , Celulose/efeitos da radiação , Módulo de Elasticidade , Ligação de Hidrogênio , Lignina/efeitos da radiação , Teste de Materiais , Poliésteres/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Resistência à Tração , Termogravimetria , Raios Ultravioleta , Molhabilidade
2.
ACS Appl Mater Interfaces ; 12(9): 11273-11286, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32043864

RESUMO

Creating a configurable and controllable surface for structure-integrated multifunctionality of ultralight aerogels is of significance but remains a huge challenge because of the critical limitations of mechanical vulnerability and structural processability. Herein, inspired by Salvinia minima, the facile and one-step coassembly approach is developed to allow the structured aerogels to spontaneously replicate Salvinia-like textures for function-adaptable surfaces morphologically. The in situ superimposed construction of bioinspired topography and intrinsic topology is for the first time performed for programmable binary architectures with multifunctionality without engendering structural vulnerability and functional disruption. By introducing the binding groups for hydrophobicity tailoring, functionalized nanocellulose (f-NC) is prepared via mechanochemistry as a structural, functional, and topographical modifier for a multitasking role. The self-generated bioinspired surface with f-NC greatly maintains the structural unity and mechanical robustness, which enable self-adaptability and self-supporting of surface configurations. With fine-tuning of nucleation-driving, the binary microstructures can be controllably diversified for structure-adaptable multifunctionalities. The resulting ultralight S. minima-inspired aerogels (e.g., 0.054 g cm-3) presented outstanding temperature-endured elasticity (e.g., 90.7% high-temperature compress-recovery after multiple cycles), durable superhydrophobicity, anti-icing properties, oil absorbency efficiency (e.g., 60.2 g g-1), and thermal insulating (e.g., 0.075 W mK-1), which are superior to these reported on the overall performance. This coassembly strategy offers the opportunities for the design of ultralight materials with topography- and function-tailorable features to meet the increasing demands in many fields such as smart surfaces and self-cleaning coatings.


Assuntos
Materiais Biomiméticos/química , Gleiquênias/química , Géis/química , Óleos/química , Adsorção , Celulose/síntese química , Celulose/química , Elasticidade , Géis/síntese química , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas
3.
Nanomaterials (Basel) ; 8(2)2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29438353

RESUMO

Prion protein (PrPSc) has drawn widespread attention due to its pathological potential to prion diseases. In this work, we constructed a novel surface plasmon resonance (SPR) detection assay involving magnetic microspheres (MMs) and its controlled release property, for selective capture, embedding, concentration, and SPR detection of PrPSc with high sensitivity and specificity. Aptamer-modified magnetic particles (AMNPs) were used to specifically capture PrPSc. Amphiphilic copolymer was used to embed the labeled PrPSc and form magnetic microspheres to isolate PrPSc from the external environment. Static magnetic and alternating magnetic fields were used to concentrate and control release the embedded PrPSc, respectively. Finally, the released AMNPs-labeled PrPSc was detected by SPR which was equipped with a bare gold sensing film. A good linear relationship was obtained between SPR responses and the logarithm of PrPSc concentrations over a range of 0.01-1000 ng/mL. The detection sensitivity for PrPSc was improved by 10 fold compared with SPR direct detection format. The specificity of the present biosensor was also determined by PrPC and other reagents as controls. This proposed approach could also be used to isolate and detect other highly pathogenic biomolecules with similar structural characteristics by altering the corresponding aptamer in the AMNPs conjugates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...