Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 356: 124250, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810685

RESUMO

Biochar was generally used to reduce the macronutrient releases and to mitigate N2O gas emissions in cropland. This experiment evaluated the trend of major plant nutrient releases using the modified Hyperbola model and the greenhouse gas emissions by incorporating different poultry manure compost biochar with organic resources. The treatments consisted of the control as the organic fertilizer materials, the incorporated poultry manure compost biochar with organic fertilizer materials (PMCBF), and the incorporated plasma-activated poultry manure compost biochar with organic fertilizer materials (PAMBF) under redox conditions. The results showed that the cumulated highest concentrations of NH4-N and NO3-N were 2168.6 mg L-1 and 21.7 mg L-1 in the control, respectively. Compared with the control, the predicted reduction rates of NH4-N release from the PMCBF and PAMBF were 26.2% and 15.4%, respectively. In the control, the cumulated highest concentrations of PO4-P and K in leachate were 681.04 mg L-1 and 120.5 mg L-1, respectively. The predicted reduction rates of PO4-P and K were 55.1% and 15.5%, respectively, under the PAMBF compared to the control. The modified Hyperbola model with cumulated NH4-N, PO4-P, and K-releases under the treatments was a good fit (p < 0.0001). For greenhouse gas (GHG) emissions, the lowest cumulative N2O was 59.59 mg m-2 in the soil incorporated with PMCBF, and its reduction rate was 23.5% compared with the control. The findings of this study will contribute to more profound insights into the potential application of PAMBF and PMCBF as bio-fertilizers adapted to mitigate NH4-N, PO4-P, and K releases and N2O emissions, offering scientific evidence for organic farming strategies.

2.
Food Chem X ; 22: 101345, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623501

RESUMO

This study investigated the effect of plasma treatment on reused water and evaluated the interactions of the plasma-treated water (PTW) with plants or microbes to determine the optimal PTW for reuse. The repeated treatment gradually accumulated nitrate (NO3-) in the PTW and lowered its pH; afterward, it led to the sprouted soybeans accumulating other inorganic ions in the PTW. The biomass of soybean sprouts was enhanced by the accumulated NO3- but decreased due to the pH effect. Meanwhile, the acidic pH reduced the microbial counts, but they increased after sprinkling the PTW over the sprouts. The optimal PTW in our study, which had a gradual increase of NO3- (≤321.8 mg·L-1) with an acceptable pH (≥pH 3), significantly enhanced the biomass by 4.2% compared to the untreated control. Additionally, it increased the total content of amino acids and isoflavones by 9% and 18% in the growing part, respectively.

3.
Plant Foods Hum Nutr ; 78(1): 146-153, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36380140

RESUMO

Cold plasma treatment has been studied to enhance the germination, growth, and bioactive phytochemical production in crops. Here, we aimed to investigate the effects of cold plasma treatment on the growth, bioactive metabolite production, and protein expression related to the physiological and osteogenic activities of oat sprouts. Oat seeds were soaked for 12 h, and then exposed to plasma for 6 min/day for 3 days after sowing. Plasma exposure did not significantly change the growth of oat sprouts; however, increased the content of bioactive metabolites. A single exposure for 6 min on the first day (T-1) increased the content of free amino acids (39.4%), γ-aminobutyric acid (53%), and avenacoside B (23%) compared to the control. Hexacosanol content was the highest in T-3 (6 min exposure on each day for 3 days), 28% higher than that in the control. Oat sprout extracts induced the phosphorylation of adenosine 5'-monophosphate-activated protein kinase and osteoblast differentiation was enhanced by increasing the alkaline phosphatase (ALP) activity; all these effects were induced by plasma treatment. Avenacoside B content was positively correlated with ALP activity (r = 0.911, p < 0.1). These results suggest that plasma treatment has the potential to improve the value of oat sprouts and that it may be used in food fortification to enhance nutritional value for promoting human health.


Assuntos
Avena , Gases em Plasma , Humanos , Avena/química , Avena/metabolismo , Gases em Plasma/análise , Gases em Plasma/metabolismo , Germinação , Antioxidantes/farmacologia , Compostos Fitoquímicos/análise , Sementes/química
4.
Front Plant Sci ; 12: 663779, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354717

RESUMO

A 3-year phytotron study was conducted in Suwon (37.27°N, 126.99°E), Korea, to evaluate and model the effects of elevated temperature on rice-weed competition. The dry weight and the number of panicles in rice were the most susceptible components to weed interference during the early growth of rice, regardless of weed species, while other yield components, including the number of grains, % ripened grain, and 1000-grain weight, were more susceptible to elevated temperature. A rectangular hyperbolic model well demonstrated that rice grain yield was affected by weed interference under elevated temperature, showing that the competitiveness of late watergrass (Echinochloa oryzicola) and water chestnut (Eleocharis kuroguwai) increased under elevated temperature conditions. Quadratic and linear models well described the effects of elevated temperature on the weed-free rice grain yield and weed competitiveness values of the rectangular hyperbolic model for the two weed species, respectively. Thus, a combined rectangular hyperbolic model incorporated with the quadratic and linear models well demonstrated the effects of elevated temperature and weed interference on rice grain yield across years. Using the combined model and estimated parameters, the rice grain yields were estimated to be 58.9, 48.5, 41.3, and 35.9% of the yields under weed-free conditions for 80 plants m-2 of late watergrass and 86.8, 64.3, 51.1, and 42.3% of the yields under weed-free conditions for 80 plants m-2 of water chestnut at 1,300, 1,500, 1,700, and 1,900°C·days of accumulated growing degree days (GDD; from transplanting to flowering, 89 days), respectively. The combined model developed in this study can provide an empirical description of both the elevated temperature and weed interference effects on rice yield and can be used for predicting rice grain yields due to weed interference under future elevated temperature conditions.

5.
Sci Rep ; 11(1): 2924, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536557

RESUMO

Ginseng (Panax ginseng Meyer) sprouts are grown to whole plants in 20 to 25 days in a soil-less cultivation system and then used as a medicinal vegetable. As a nitrogen (N) source, plasma-treated water (PTW) has been used to enhance the seed germination and seedling growth of many crops but has not been investigated for its effects on ginseng sprouts. This study established an in-situ system for N-containing water production using plasma technology and evaluated the effects of the PTW on ginseng growth and its bioactive phytochemicals compared with those of an untreated control. The PTW became weakly acidic 30 min after the air discharge at the electrodes because of the formation of nitrate (NO3‒) and nitrite (NO2‒) in the water. The NO3‒ and NO2‒ in the PTW, together with potassium ions (K+), enhanced the shoot biomass of the ginseng sprout by 26.5% compared to the untreated control. The ginseng sprout grown in the PTW had accumulated more free amino acids and ginsenosides in the sprout at 25 days after planting. Therefore, PTW can be used as a liquid N fertilizer for P. ginseng growth and phytochemical accumulation during sprouting under aeroponic conditions.


Assuntos
Ginsenosídeos/análise , Panax/química , Plântula/crescimento & desenvolvimento , Água/química , Agricultura/métodos , Nitrogênio/química , Nitrogênio/metabolismo , Panax/crescimento & desenvolvimento , Panax/metabolismo , Gases em Plasma , Plântula/química , Plântula/metabolismo
6.
Front Plant Sci ; 11: 988, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760412

RESUMO

Crops during their early growth stages are vulnerable to a wide range of environmental stressors; thus, earlier seed invigoration and seedling establishment are essential in crop production. As an alternative to synthetic chemical treatments, plasma technology could be one of the emerging technologies to enhance seed germination and seedling vigor by managing environmental stressors. Recent studies have shown its beneficial effects in various stress conditions, suggesting that plasma treatment can be used for early crop stress management. This paper reviewed the effects of different types of plasma treatments on plant responses in terms of the seed surface environment (seed scarification and pathogen inactivation) and physiological processes (an enhanced antioxidant system and activated defense response) during the early growth stages of plants. As a result, plasma treatment can enhance seed invigoration and seedling establishment by alleviating the adverse effects of environmental stressors such as drought, salinity, and pathogen infection. More information on plasma applications and their mechanisms against a broad range of stressors is required to establish a better plasma technology for early crop stress management.

7.
Sci Total Environ ; 634: 821-830, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29653426

RESUMO

Pollen-mediated gene flow (PMGF) from genetically modified (GM) Brassica napus to its wild relatives by wind and insects is a major ecological concern in agricultural ecosystems. This study conducted is to estimate maximum potential gene flow and differentiate between wind- and bee-mediated gene flows from herbicide resistant (HR) B. napus to its closely-related male sterile (MS) relatives, B. napus, B. juncea and Raphanus sativus. Various markers, including pods formation in MS plants, herbicide resistance, and SSR markers, were used to identify the hybrids. Our results revealed the following: 1) maximum potential gene flow (a maximum % of the progeny of pollen recipient confirmed hybrid) to MS B. napus ranged from 32.48 to 0.30% and from 14.69 to 0.26% at 2-128 m from HR B. napus under open and wind pollination conditions, respectively, and to MS B. juncea ranged from 21.95 to 0.24% and from 6.16 to 0.16%, respectively; 2) estimates of honeybee-mediated gene flow decreased with increasing distance from HR B. napus and ranged from 17.78 to 0.03% at 2-128 m for MS B. napus and from 15.33 to 0.08% for MS B. juncea; 3) a small-scale donor plots would strongly favour insect over wind pollination; 4) no gene flow occurred from HR B. napus to MS R. sativus. Our approach and findings are helpful in understanding the relative contribution of wind and bees to gene flow and useful for estimating maximum potential gene flow and managing environmental risks associated with gene flow.


Assuntos
Brassica napus/genética , Resistência a Herbicidas/genética , Plantas Geneticamente Modificadas , Polinização , Vento , Animais , Abelhas , Brassica rapa , Herbicidas , Masculino
8.
Int J Pediatr Otorhinolaryngol ; 74(12): 1347-50, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20863577

RESUMO

BACKGROUND AND OBJECTIVES: The volume of the air cavities in the paranasal sinuses is not only the simplest, but also the most important index for paranasal sinus evaluation. However, few volumetric studies have been performed in all age groups. The purpose of the current study was to outline the normal development of paranasal sinuses in all age groups, and to determine normal adult volumetric values by means of computed tomographic (CT) scan of paranasal sinus using volumetric procedures. MATERIALS AND METHODS: A prospective volumetric CT study was conducted with 260 patients (520 sides) <25 years of age by means of three-dimensional reconstruction. RESULTS: The frontal sinuses began to pneumatize at 2 years of age, exhibited a faster growth pattern between 6 and 19 years of age, and the mean volume after full growth was 3.46±0.78 cm(3). The maxillary sinuses were pneumatized at birth in all cases, exhibited a monomodal growth pattern increasing until 15 years of age, and the mean volume after full growth was 14.83±1.36 cm(3). The floor of the sinus was the same level as the floor of the nasal cavity was between 7 and 15 years of age. The ethmoid sinuses exhibited a faster initial tendency to increase until 7 years of age, were completed by 15-16 years of age, and the mean volume after full growth was 4.51±0.92 cm(3). The sphenoid sinuses exhibited a growth spurt between 6 and 10 years of age, were completed by 15 years of age, and the mean volume after full growth was 3.47±0.93 cm(3). CONCLUSION: The results of this study are presented to provide the basis for an objective normal volume of sinus development and for studies involving diseases of the sinuses.


Assuntos
Seios Paranasais/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adolescente , Adulto , Povo Asiático , Criança , Pré-Escolar , Seio Etmoidal/diagnóstico por imagem , Seio Etmoidal/crescimento & desenvolvimento , Feminino , Seio Frontal/diagnóstico por imagem , Seio Frontal/crescimento & desenvolvimento , Humanos , Imageamento Tridimensional , Lactente , Masculino , Seio Maxilar/diagnóstico por imagem , Seio Maxilar/crescimento & desenvolvimento , Seios Paranasais/crescimento & desenvolvimento , Seio Esfenoidal/diagnóstico por imagem , Seio Esfenoidal/crescimento & desenvolvimento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...