Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 11(1): 162, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27009529

RESUMO

We were successful in growing a dense Cu film on Al2O3 substrates at room temperature using an aerosol deposition (AD) method. The characteristics of Cu films were investigated through electrical resistivity and X-ray photoelectron spectroscopy (XPS). The resistivity of Cu films was low (9.2-12.5 µΩ cm), but it was five to seven times higher than that of bulk copper. The deterioration of the resistivity indicates that a Cu2O phase with CuO occurs due to a particle-to-particle collision. Moreover, the growth of Cu films was investigated by observing their microstructures. At the initial stage in the AD process, the impacted particles were flattened and deformed on a rough Al2O3 substrate. The continuous collision of impacted particles leads to the densification of deposited coating layers due to the plastic deformation of particles. The bonding between the Cu particles and the rough Al2O3 substrate was explained in terms of the adhesive properties on the surface roughness of Al2O3 substrates. It was revealed that the roughness of substrates was considerably associated with the mechanical interlocking between Cu particles and rough Al2O3 substrate.

2.
J Nanosci Nanotechnol ; 12(2): 1192-5, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22629919

RESUMO

We synthesized nano-sized (Pb, La)TiO3 powder using a high energy mechano-chemical technique at room temperature. By the results, nano-sized (Pb, La)TiO3 powder with perovskite structure was successfully synthesized from an oxide mixture using a high energy mechano-chemical technique without any post-annealing. The mechanically-synthesized (Pb, La)TiO3 powder consisted of nanometer sized particles and had very high homogeneity. According to increase of milling time, source phases such as Pb oxides and TiO2 disappeared and the perovskite PLT phase was formed by chemical reaction and the release of OH group.

3.
J Biomed Mater Res B Appl Biomater ; 73(1): 186-93, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15672403

RESUMO

A study is made of fracture from cyclic loading of WC spheres on the top surfaces of thick (1 mm) brittle layers on polymeric substrates, as representative of repetitive occlusal contact on dental crown structures. The advantage of glass layers is that internal cracks can be followed in situ during the entire cyclic loading process. The glass surfaces are first given a surface-abrasion treatment to control the flaw state, such that the strengths match those of dental porcelains. Cyclic contact tests are carried out at prescribed maximum loads and frequencies, in water. In addition to conventional cone cracks that form outside the contact circle, additional, inner cone cracks form within the contact in the water environment. These inner cones are observed only in cyclic loading in water and are accelerated at higher frequencies, indicating a strong mechanical driving force. They tend to initiate after the outer cones, but subsequently catch up and penetrate much more rapidly and deeply, ultimately intersecting the underlying coating/substrate interface. Comparative tests on glass/polymer bilayers versus monolithic glass, in cyclic versus static loading, in water versus air environment, on abraded versus etched surfaces, and with glass instead of WC indenters, confirm the existence of a dominant mechanical element in the inner-cone crack evolution. It is suggested that the source of the mechanical driving force is hydraulic pressure from intrusion and entrapment of liquid in surface fissures at the closing contact interface. This new type of cone cracking may limit dental crown veneer lifetimes under occlusal fatigue conditions, especially in thicker layers, where competing modes-such as undersurface radial cracks-are suppressed.


Assuntos
Coroas , Porcelana Dentária/química , Falha de Restauração Dentária , Óxido de Alumínio/química , Materiais Biocompatíveis/química , Materiais Dentários/química , Desgaste de Restauração Dentária , Análise do Estresse Dentário , Vidro , Teste de Materiais , Microscopia de Vídeo , Polímeros/química , Estresse Mecânico , Propriedades de Superfície , Resistência à Tração , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...