Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38730765

RESUMO

The plastic deformation of TWIP steel is greatly inhibited during the expansion process. The stress-strain curves obtained through expansion experiments and observations of fracture morphology confirmed the low plastic behavior of TWIP steel during expansion deformation. Through an analysis of the mechanical expansion model, it was found that the expansion process has a lower stress coefficient and a faster strain rate than stretching, which inhibits the plasticity of TWIP steel during expansion deformation. Using metallographic microscopy, transmission electron microscopy, and EBSD to observe the twin morphology during expansion deformation and tensile deformation, it was found that expansion deformation has a higher twin density, which is manifested in a denser twin arrangement and a large number of twin deliveries in the microscopic morphology. During the expansion deformation process, dislocation slips are hindered by twins, the free path of the slips is reduced, and dislocations accumulate significantly. The accumulation area is the initial point of crack expansion. The results show that the significant dislocation accumulation caused by the delivery of a large number of twins under expansion deformation is the main reason for the decrease in the plasticity of TWIP steel.

2.
Opt Express ; 31(11): 18468-18486, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381557

RESUMO

The preceding works introduced the leapfrog complying divergence implicit finite-difference time-domain (CDI-FDTD) method, which exhibits high accuracy and unconditional stability. In this study, the method is reformulated to simulate general electrically anisotropic and dispersive media. The auxiliary differential equation (ADE) method is employed to solve the equivalent polarization currents, which are then integrated into the CDI-FDTD method. The iterative formulae are presented, and the calculation method is similar to that of the traditional CDI-FDTD method. Additionally, the Von Neumann method is utilized to analyze the unconditional stability of the proposed method. To evaluate the performance of the proposed method, three numerical cases are conducted. These include calculating the transmission and reflection coefficients of a monolayer graphene sheet and a monolayer magnetized plasma, as well as the scattering properties of a cubic block plasma. The numerical results obtained by the proposed method demonstrate its accuracy and efficiency in simulating general anisotropic dispersive media, compared to both the analytical method and the traditional FDTD method.

3.
Materials (Basel) ; 13(3)2020 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-32024304

RESUMO

Due to its excellent comprehensive performances, Al-Si-Mg alloy i widely used in automotive, transportation and other fields. In this work, tensile performances and fracture behavior of Al-Si-Mg alloy modified by dilute Sc and Sr elements (Al-7.12Si-0.36Mg-0.2Sc-0.005Sr) were investigated at the temperature of -60-200 °C for the first time, aiming to obtain a satisfactory thermal stability within a certain temperature range. The results showed that the new designed Al-Si-Mg alloy possessed a completely stable yield strength and a higher-level elongation under the present conditions. Fracture morphology analysis, fracture profile observation and strengthening mechanism analysis were applied to elucidate the evolution mechanisms of yield strength and elongation of the alloy. The fracture modes were significantly distinct in different temperature sections, and the reasons were discussed. In addition, the interaction among the nano precipitate phase particles, the deformation substructure and the dislocations were responsible for the thermal stability of the alloy within a certain temperature range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...