Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Manag Res ; 10: 2419-2428, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30122991

RESUMO

PURPOSE: Current knowledge of TMEM17, a recently identified protein of the transmembrane (TMEM) family, is limited, especially with respect to its expression and biological functions in malignant tumors. This study analyzed TMEM17 expression in invasive breast cancer tissue and breast cell lines and its relevance to clinicopathological factors, and investigated the mechanisms underlying the biological effects of TMEM17 on breast cancer cells. PATIENTS AND METHODS: TMEM17 protein expression was determined in 20 freshly harvested specimens (tumor and paired normal tissues) by Western blotting. Immunohistochemical analysis was performed to determine the expression and subcellular localization of TMEM17 in samples from 167 patients (mean age, 49 years) diagnosed with invasive ductal carcinoma (38 with triple-negative breast cancer; 129 with non-triple-negative breast cancer) who underwent complete resection in the First Affiliated Hospital of China Medical University between 2011 and 2013. Furthermore, TMEM17 was knocked down by small interfering RNAs in breast cancer cell lines. RESULTS: TMEM17 was found to be significantly upregulated in breast cancer tissues compared to the corresponding normal breast tissues by Western blotting (p=0.015). Immunohistochemical analysis revealed that TMEM was significantly upregulated in invasive breast cancer cells compared to adjacent normal breast duct glandular epithelial cells (10.78% vs 76.05%, p<0.001), and its expression was closely related to the patient's T-stage (p=0.022), advanced TNM stages (p=0.007), and lymph node metastasis (p=0.012). After TMEM17 knockdown or overexpression in breast cancer cell lines, TMEM17 upregulated p-AKT, p-GSK3ß, active ß-catenin, and Snail, and downstream target proteins c-myc and cyclin D1, and downregulated E-cadherin, resulting in increased cancer cell proliferation, invasion, and migration. These effects were reversed by the AKT inhibitor LY294002. CONCLUSION: Our results indicate that TMEM17 is upregulated in breast cancer tissues and can promote malignant progression of breast cancer cells by activating the AKT/GSK3ß signaling pathway.

2.
Cell Biol Int ; 42(8): 994-1005, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29573522

RESUMO

Lung cancer is one of life-threatening cancers in the worldwide. Liver kinase B1 (LKB1) has been reported to be closely related to cancers; however, the underlying mechanism of LKB1 in lung cancer remains unclear. In our study, a LKB1 specific shRNA was employed to down-regulate LKB1 levels and a LKB1 over-expression plasmid was constructed to up-regulate LKB1 levels. Thereafter, growth of lung cancer cells was assessed by MTT assay and flow cytometry. Effects of LKB1 on the activation of sonic hedgehog (Shh) signaling pathway were detected by Western blot. Effects of LKB1 on lung cancer growth and Shh signaling pathway activation were also assessed in vivo. Our results showed that LKB1 inhibited proliferation of lung cancer cells and induced their apoptosis. Moreover, LKB1 inhibited Shh signaling pathway activation. Our in vivo study also showed that LKB1 inhibited lung cancer growth in vivo and modulated Shh signaling pathway. Treatment with cyclopamine, a Shh signaling pathway inhibitor, reversed the effects of LKB1 silencing and enhanced the effects of LKB1 over-expression. Results of our study demonstrate that LKB1 inhibits lung cancer growth in vitro and in vivo through Shh signaling pathway.


Assuntos
Proteínas Hedgehog/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células A549 , Quinases Proteína-Quinases Ativadas por AMP , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Alcaloides de Veratrum/farmacologia , Proteína GLI1 em Dedos de Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...