Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 8(33): 21595-602, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27490722

RESUMO

Aggregation is a critical limitation for the practical application of graphene-based materials. Herein, we report that graphene oxide (GO) nanosheets chemically modified with ethanolamine (EA), ethylene glycol (EG), and sulfanilic acid (SA) demonstrate superior dispersion stability in organic solvents, specifically EG, based on the differences in their covalent chemistries. Functionalized GO was successfully dispersed in EG at a concentration of 9.0 mg mL(-1) (0.50 vol %), the highest dispersion concentration reported to date. Moreover, our study introduces a unique analytical method for the assessment of dispersion stability and successfully quantifies the instability index based on transmission profiles under centrifugation cycles. Interestingly, GO-EG and GO-EA exhibited highly improved dispersion stabilities approximately 96 and 48 times greater than that of GO in EG solvent, respectively. This finding highlights the critical role of surface functional groups in the enhancement of chemical affinity and miscibility in the surrounding media. We anticipate that the novel structural designs and unique tools presented in this study will further the understanding and application of chemically functionalized carbon materials.

2.
Nanoscale Res Lett ; 11(1): 136, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26964558

RESUMO

Nanofluids with enhanced thermal properties are candidates for thermal management in automotive systems, with scope for improving energy efficiency. In particular, many studies have reported on dispersions of nanoparticles with long-term stability in the base fluid, with qualitative evaluations of the dispersion stability via either the naked eye or optical instruments. Additives such as surfactants can be used to enhance the dispersion of nanoparticles; however, this may diminish their intrinsic thermal properties. Here, we describe molecular dynamics simulations of nanofluids containing graphene sheets dispersed in ethylene glycol and water. We go on to suggest a quantitative evaluation method for the degree of dispersion, based on the ratio of the total number of nanoparticles to the number of clustered nanoparticles. Moreover, we investigate the effects of functional groups on the surface of graphene, which are expected to improve the dispersion without requiring additives such as surfactants due to steric hindrance and chemical affinity for the surrounding fluid. We find that, for pure graphene, the degree of dispersion decreased as the quantity of graphene sheets increased, which is attributed to an increased probability of aggregation at higher loadings; however, the presence of functional groups inhibited the graphene sheets from forming aggregates.

3.
Sci Technol Adv Mater ; 13(2): 025004, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27877482

RESUMO

A novel and effective method was devised for synthesizing a vertically aligned carbon nanotube (CNT) forest on a substrate using waste plastic obtained from commercially available water bottles. The advantages of the proposed method are the speed of processing and the use of waste as a raw material. A mechanism for the CNT growth was also proposed. The growth rate of the CNT forest was ∼2.5 µm min-1. Transmission electron microscopy images indicated that the outer diameters of the CNTs were 20-30 nm on average. The intensity ratio of the G and D Raman bands was 1.27 for the vertically aligned CNT forest. The Raman spectrum showed that the wall graphitization of the CNTs, synthesized via the proposed method was slightly higher than that of commercially available multi-walled carbon nanotubes (MWCNTs). We expect that the proposed method can be easily adapted to the disposal of other refuse materials and applied to MWCNT production industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...