Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 208: 108467, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412704

RESUMO

Overgrazing and phosphorus (P) deficiency are two major factors limiting the sustainable development of grassland ecosystems. Exploring plant P utilization and acquisition strategies under grazing can provide a solid basis for determining a reasonable grazing intensity. Both foliar P allocation and root P acquisition are crucial mechanisms for plants to adapt to environmental P availability; however, their changing characteristics and correlation under grazing remain unknown. Here, we investigated foliar P fractions, root P-acquisition traits and gene expression, as well as rhizosphere and bulk soil properties of two dominant plant species, Leymus chinensis (a rhizomatous grass) and Stipa grandis (a bunchgrass), in a field grazing intensity gradient site in Inner Mongolia. Grazing induced different degrees of compensatory growth in the two dominant plant species, increased rhizosphere P availability, and alleviated plant P limitation. Under grazing, the foliar metabolite P of L. chinensis increased, whereas the nucleic acid P of S. grandis increased. Increased P fractions in L. chinensis were positively correlated with increased root exudates and rapid inorganic P absorption. For S. grandis, increased foliar P fractions were positively correlated with more fine roots, more root exudates, and up-regulated expression of genes involved in defense and P metabolism. Overall, efficient root P mobilization and uptake traits, as well as increases in leaf metabolic activity-related P fractions, supported plant compensatory growth under grazing, a process that differed between tiller types. The highest plant productivity and leaf metabolic activity-related P concentrations under medium grazing intensity clarify the underlying basis for sustainable livestock production.


Assuntos
Ecossistema , Fósforo , Plantas , Poaceae , Rizosfera , Solo , Nitrogênio/análise
2.
New Phytol ; 240(1): 157-172, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37547950

RESUMO

Phosphorus (P) fertilization can alleviate a soil P deficiency in grassland ecosystems. Understanding plant functional traits that enhance P uptake can improve grassland management. We measured impacts of P addition on soil chemical and microbial properties, net photosynthetic rate (Pn ) and nonstructural carbohydrate concentrations ([NSC]), and root P-uptake rate (PUR), morphology, anatomy, and exudation of two dominant grass species: Leymus chinensis (C3 ) and Cleistogenes squarrosa (C4 ). For L. chinensis, PUR and Pn showed a nonlinear correlation. Growing more adventitious roots compensated for the decrease in P transport per unit root length, so that it maintained a high PUR. For C. squarrosa, PUR and Pn presented a linear correlation. Increased Pn was associated with modifications in root morphology, which further enhanced its PUR and a greater surplus of photosynthate and significantly stimulated root exudation (proxied by leaf [Mn]), which had a greater impact on rhizosheath micro-environment and microbial PLFAs. Our results present correlations between the PUR and the Pn of L. chinensis and C. squarrosa and reveal that NSC appeared to drive the modifications of root morphology and exudation; they provide more objective basis for more efficient P-input in grasslands to address the urgent problem of P deficiency.


Assuntos
Ecossistema , Pradaria , Solo/química , Fósforo , Fotossíntese , Poaceae , China , Raízes de Plantas
3.
Sci Total Environ ; 876: 163225, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37011672

RESUMO

Ongoing climate change and long-term overgrazing are the main causes of grassland degradation worldwide. Phosphorus (P) is typically a limiting nutrient in degraded grassland soils, and its dynamics may play a crucial role in the responses of carbon (C) feedback to grazing. Yet how multiple P processes respond to a multi-level of grazing and its impact on soil organic carbon (SOC), which is critical for sustainable grassland development in the face of climate change, remains inadequately understood. Here, we investigated P dynamics at the ecosystem level in a 7-year-long multi-level grazing field experiment and analyzed their relation to SOC stock. The results showed that, due to the greater P demand for compensatory plant growth, grazing by sheep increased the aboveground plants' P supply (by 70 % at most) while decreasing their relative P limitation. The increase in P in aboveground tissue was associated with changes in plant root-shoot P allocation and P resorption, and the mobilization of moderately labile organic P in soil. Affected by the altered P supply under grazing, corresponding changes to root C stock and soil total P were two major factors impacting SOC. Compensatory growth-induced P demand and P supply processes responded differently to grazing intensity, resulting in differential effects on SOC. Unlike the light and heavy grazing levels, which reduced the SOC stock, moderate grazing was capable of maintaining maximal vegetation biomass, total plant biomass P, and SOC stock, mainly by promoting biologically- and geochemically-driven plant-soil P turnover. Our findings have important implications for addressing future soil C losses and mitigating higher atmospheric CO2 threats, as well as maintaining high productivity in temperate grasslands.


Assuntos
Ecossistema , Solo , Animais , Ovinos , Pradaria , Carbono/metabolismo , Plantas/metabolismo , Biomassa
4.
Plant Physiol Biochem ; 185: 221-232, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35714430

RESUMO

Intensifying nitrogen (N) deposition disturbs the growth of grassland plants due to an imbalance between their carbon (C) and N metabolism. However, it's unclear how plant physiological strategies restore balance. We investigated the effects of multiple N addition levels (0-25 g N m-2 yr-1) on the coordination of C and N metabolism in a dominant grass (Leymus chinensis) in a semiarid grassland in northern China. To do so, we evaluated photosynthetic parameters, leaf N allocation, C- and N-based metabolites, and metabolic enzymes. We found that a moderate N level (10 g N m-2 yr-1) promoted carboxylation and electron transport by allocating more N to the photosynthetic apparatus and increasing ribulose bisphosphate carboxylase/oxygenase activity, thereby increasing photosynthetic capacity. The highest N level (25 g N m-2 yr-1) promoted N investment in nonphotosynthetic pathways and increased the free amino acids in the leaves. N addition stimulated the accumulation of C and N compounds across organs by activating sucrose phosphate synthase, nitrate reductase, and glutamine synthetase. This enhancement triggered a transformation of primary metabolites (nonstructural carbohydrates, proteins, amino acids) to secondary metabolites (flavonoids, phenols, and alkaloids) for temporary storage or as defense compounds. Citric acid, as the C skeleton for enhanced N metabolism, decreased significantly, and malic acid increased by catalysis of phosphoenolpyruvate carboxylase. Our findings show the adaptability of L. chinensis to different N-addition levels by adjusting its allocations of C and N metabolic compounds and confirm the roles of C and N coordination by grassland plants in these adaptations.


Assuntos
Carbono , Poaceae , Aminoácidos/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Plantas/metabolismo , Poaceae/metabolismo
5.
Sci Rep ; 10(1): 18913, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144613

RESUMO

Zoysia matrella [L.] Merr. is a widely cultivated warm-season turf grass in subtropical and tropical areas. Dwarf varieties of Z. matrella are attractive to growers because they often reduce lawn mowing frequencies. In this study, we describe a dwarf mutant of Z. matrella induced from the 60Co-γ-irradiated calluses. We conducted morphological test and physiological, biochemical and transcriptional analyses to reveal the dwarfing mechanism in the mutant. Phenotypically, the dwarf mutant showed shorter stems, wider leaves, lower canopy height, and a darker green color than the wild type (WT) control under the greenhouse conditions. Physiologically, we found that the phenotypic changes of the dwarf mutant were associated with the physiological responses in catalase, guaiacol peroxidase, superoxide dismutase, soluble protein, lignin, chlorophyll, and electric conductivity. Of the four endogenous hormones measured in leaves, both indole-3-acetic acid and abscisic acid contents were decreased in the mutant, whereas the contents of gibberellin and brassinosteroid showed no difference between the mutant and the WT control. A transcriptomic comparison between the dwarf mutant and the WT leaves revealed 360 differentially-expressed genes (DEGs), including 62 up-regulated and 298 down-regulated unigenes. The major DEGs related to auxin transportation (e.g., PIN-FORMED1) and cell wall development (i.e., CELLULOSE SYNTHASE1) and expansin homologous genes were all down-regulated, indicating their potential contribution to the phenotypic changes observed in the dwarf mutant. Overall, the results provide information to facilitate a better understanding of the dwarfing mechanism in grasses at physiological and transcript levels. In addition, the results suggest that manipulation of auxin biosynthetic pathway genes can be an effective approach for dwarfing breeding of turf grasses.


Assuntos
Redes Reguladoras de Genes/efeitos da radiação , Mutação , Poaceae/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fenótipo , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/efeitos da radiação , Poaceae/efeitos da radiação , Estações do Ano
6.
J Environ Manage ; 271: 110984, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579531

RESUMO

Plants have different physiological characteristics as the season changes, grazing management in compliance with plant growth and development characteristics may provide new ideas for sustainable livestock development. However, there has been little research on seasonal grazing and plants physiological responses under it. Here, we studied a typical steppe ecosystem of Inner Mongolia, with Leymus chinensis as the dominant species, in five grazing treatments: continuous grazing, seasonal grazing (which started in spring or in early and late summer), and no grazing (the control). We analyzed growth and resistance of L. chinensis in the five treatments by measuring annual primary productivity, morphological traits and various physiological processes. Compared with continuous grazing, seasonal grazing significantly alleviated grassland degradation. The plants were less affected by stress under spring grazing, with net photosynthesis and non-photochemical quenching closer to the control values and with a lower malondialdehyde content. The annual primary production of plants under grazing started in the early and late summer were 3-4 times the value under continuous grazing. Regrowth under early-summer grazing was greatly improved, and stress resistance was stronger with a higher proline content and high antioxidant enzyme activity. And nutrient accumulation at the end of the growing season such as abundant soluble sugars were transferred from aboveground tissue to the roots in September under late-summer grazing, which benefited regrowth the next year. All these physiological processes were regulated by hormonal changes. Our results highlight how plants response grazing stress in different growing seasons and suggest that seasonal grazing can improve the stress resistance and regrowth capacity of forage vegetation, and applying this knowledge can promote more sustainable grazing practices.


Assuntos
Ecossistema , Poaceae , Animais , China , Pradaria , Desenvolvimento Vegetal , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...