Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 13: 100257, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35499028

RESUMO

Glycated protein is a kind of promising material that can improve the bioavailability of bioactive compounds and achieve sustained release under digestion. In this study, the α-lactalbumin (ALA)-dextran conjugates synthesized by Maillard reaction were fabricated to load and protect quercetin. Quercetin-loaded micelles stabilized by the ALA-dextran conjugates 1:4 showed the smallest size (428.57 ± 5.64 nm) with highest encapsulation efficiency (94.38% ± 0.50%) of quercetin. Compared to ALA/dextran mixture complex, the conjugates-based micelles had better pH, ionic strength and photothermal stability. Furthermore, the micelles composed of the conjugates 1:2 and 1:4 showed the best controlled release effect during the simulated digestion, releasing 62.41% and 66.15% of quercetin from the total encapsulated contents, respectively, which was mainly related to the resistance of glycated ALA to the enzymes. The findings indicated that ALA-dextran conjugates could be effectively designed for the ideal delivery system of hydrophobic bioactive compounds in food industry.

2.
Food Funct ; 13(8): 4562-4575, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35353100

RESUMO

Phenolic acids play an active role in protecting the intestinal barrier, the structural integrity and function of which are crucial for host health. In the present study, we aimed to identify phenolic compounds that protect the intestine and explore the underlying mechanisms. We performed an imaging-based, quantitative, high-content screening (using Caco-2 and LS174T incubated with lipopolysaccharide/palmitic acid, respectively) to identify phenolic acids that could improve the mucosal barrier. We found that chlorogenic acid (CGA), 5-caffeoylquinic acid, protocatechuic acid, and caffeic acid alleviated intestinal barrier disruption. Furthermore, CGA increased transepithelial electrical resistance (TEER) and decreased paracellular permeability. Mechanistically, CGA inhibited the activation of myosin light chain kinase (MLCK) and Rho-associated kinase 1 (ROCK1) signals, thereby downregulating the expression of the downstream molecules phosphorylated myosin phosphatase target subunit 1 (p-MYPT1), MLCK, and phosphorylated myosin light chain (p-MLC), and upregulating the expression of tight junction proteins. In addition, CGA alleviated endoplasmic reticulum (ER) stress by inhibiting the expression levels of ER markers [glucose-regulated protein78 (GRP78) and C/EBP homologous protein (CHOP)] and the nuclear translocation of activating transcription factor 6 (ATF6), thereby promoting the expression of mucin [mucin 2 (Muc2), mucin 5AC (MUC5AC)] and secretory factor trefoil factor family 3 (TFF3) proteins. In summary, we identified four substances that can stabilise intestinal homeostasis. Of these, CGA protects the intestinal barrier by inhibiting ROCK/MLCK signalling pathways and relieving ER stress. These findings highlight the importance of rapidly screening potential active ingredients that benefit the intestinal barrier and provide a theoretical basis for enteral nutrition.


Assuntos
Ácido Clorogênico , Quinase de Cadeia Leve de Miosina , Células CACO-2 , Ácido Clorogênico/metabolismo , Ácido Clorogênico/farmacologia , Estresse do Retículo Endoplasmático , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Transdução de Sinais , Junções Íntimas/metabolismo , Quinases Associadas a rho/metabolismo
3.
Food Chem Toxicol ; 150: 112098, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33675858

RESUMO

Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants (POPs). They are constantly detected in foods. PBDEs can disrupt the intestinal flora, but enterotoxicity is unknown. Luteolin, one kind of flavonoid, has drawn increasing interest as an agent that strengthens the intestinal barrier. This study aimed to evaluate the mitigating effect of luteolin on damage to the intestinal barrier induced by decabromodiphenyl ether (BDE-209) in a Caco-2 cell monolayer model. Results showed that luteolin mitigated BDE-209-induced damage to intestinal epithelial barrier by reducing the levels of reactive oxygen species (ROS), increasing the activity of superoxide dismutase (SOD) and glutathione (GSH), suppressed the secretion of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß), and increased the expression of tight junction (TJ) proteins (ZO-1, occludin, and claudin-1). Furthermore, the protective effects were related to the inhibition of extracellular regulated protein kinases (ERK) and nuclear factor kappa-B (NF-κB)/myosin light chain kinase (MLCK) signaling pathways, and the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. This study is the first to provide strong evidence that BDE-209 can damage the intestinal barrier, and we here investigated the important protective effect of luteolin, which may lay the foundation for the development of luteolin as a dietary supplement to strengthen the intestinal barrier.


Assuntos
Células Epiteliais/efeitos dos fármacos , Éteres Difenil Halogenados/toxicidade , Mucosa Intestinal/citologia , Luteolina/farmacologia , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Estresse Oxidativo , Transdução de Sinais , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...