Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 468: 133725, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401209

RESUMO

Clay minerals formations are potential geological barrier (host rocks) for the long-rerm storage of uranium tailing in deep geological repositories. However, there are still obstacles to the efficient retardation of uranium because of the competition between negatively charged regions at the clay minerals end face, surface and between layers, as well as low mineralization capacity. Herein, employing a simple method, we used sodium alginate (SA), an inexpensive natural polymer material, polyethylene (PE), and the natural clay minerals montmorillonite (Mt), nontronite (Nt), and beidellite (Bd) to prepare three hydrogel adsorbents, (denoted as Mt/PE-@SA, Nt/PE-@SA, and Bd/PE-@SA), respectively. The application of obtained hydrogel adsorbents further extends to uranium(VI) removal from aqueous. Due to the synergistic action of SA group and PE group, hydrogel adsorbents showed select adsorption and mineralization effect on uranium(VI), among which the maximum uranium(VI) adsorption capacity of Nt/PE-@SA was 133.3 mg·g-1 and Mt/PE-@SA exhibited strong selectivity for uranium(VI) in the presence of coexisting metal ions. Cyclic voltammetry studies indicated the mitigation and immobilization of uranium species onto adsorbents by both reduction and mineralization. Besides, the synergistic adsorption of SA and PE on clay minerals was hypothesized, and the idea was supported by structure optimizations results from Monte Carlo dynamics simulation (MCD). Three obtained hydrogel adsorbents structural model was constructed based on its physicochemical characterization, the low energy adsorption sites and adsorption energies are investigated using MCD simulation. The simulation results show that obtained hydrogel adsorbents have a strong interaction with uranium(VI), which ensures the high adsorption capacity of those materials. Most importantly, this work demonstrates a new strategy for preparing mineral-based hydrogel adsorbents with enough stability and provides a new perspective for uranium(VI) removal in complex environment.

2.
J Hazard Mater ; 365: 835-845, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30481734

RESUMO

Potentially toxic metal ions (Xn+: Rb+, Sr2+, Cr3+, Mn2+, Ni2+, Zn2+, Cd2+) usually coexist with uranyl (UO2+), which will have a great influence on the selective adsorption process. Here, the core-shell MFe2O4-TiO2 (M = Mn, Fe, Zn, Co, or Ni) nanoparticles were synthesized and assessed as new selective adsorbents. The results reveal that TiO2(101) preferentially grows along the MFe2O4(311)/(111) orientation. The M2+ ions as the mediators transfer the holes from MFe2O4 to TiO2, at the conduction bands. On the TiO2(101) surfaces and TiO2(101)-TiO2(101) gaps, the paired active electrons mainly complex with water molecules as hydroxyl radicals to capture Xn+ ions, forming an ion layer to block UO22+ from being adsorbed. Simultaneously, it should be noted that an interesting adsorption pathway was UO22+ being horizontally and irreversibly adsorbed in the MFe2O4(311)/(111)-TiO2(101) interface, and therein, the stable adsorption capacity was found to be 66.78 mg g-1 in the MnFe2O4(311)/(111)-TiO2(101) interface. Finally, a mechanism of hybrid orbitals between MnFe2O4-TiO2 and UO2+-Xn+ was proposed.

3.
J Hazard Mater ; 365: 81-87, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30412810

RESUMO

The Bi-Bi2O3-TiO2-C composites were prepared by a sol-gel method and investigated for capturing iodine-129 (129I) in off-gas producing from spent fuel reprocessing. Firstly, the optimal process conditions were operated through the orthogonal experiments, showing that the capturing capacity of the optimal composite was calculated about 504.0 ± 19.5 mg/g, which is approximately 2.0-fold higher than that of the commercial silver-exchanged zeolites (AgX). Secondly, the structure and morphology of the Bi-Bi2O3-TiO2-C composite were characterized, suggesting that the Bi is regularly spherical in the shape, coating by the Bi2O3, TiO2 and amorphous carbon. Finally, the mechanism for the iodine adsorption in the Bi-Bi2O3-TiO2-C system was revealed, demonstrating that the iodine was captured by physisorption and chemisorption.

4.
J Hazard Mater ; 337: 20-26, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28501640

RESUMO

A rapid and efficient method is particularly necessary in the timely disposal of seriously radioactive contaminated soil. In this paper, a series of simulated radioactive soil waste containing different contents of neodymium oxide (3-25wt.%) has been successfully vitrified by microwave sintering at 1300°C for 30min. The microstructures, morphology, element distribution, density and chemical durability of as obtained vitrified forms have been analyzed. The results show that the amorphous structure, homogeneous element distribution, and regular density improvement are well kept, except slight cracks emerge on the magnified surface for the 25wt.% Nd2O3-containing sample. Moreover, all the vitrified forms exhibit excellent chemical durability, and the leaching rates of Nd are kept as ∼10-4-10-6g/(m2day) within 42days. This demonstrates a potential application of microwave sintering in radioactive contaminated soil disposal.

5.
J Hazard Mater ; 336: 174-187, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28494305

RESUMO

High-photostability fluorescent (XZn)Fe2O4 (X=Mg, Mn or Ni) embedded in BiFeO3 spinel-perovskite nanocomposites were successfully fabricated via a novel bio-induced phase transfer method using shewanella oneidensis MR-1. These nanocomposites have the near-infrared fluorescence response (XZn or Fe)-O-O-(Bi) interfaces (785/832nm), and the (XZn)Fe2O4/BiFeO3 lattices with high/low potentials (572.15-808.77meV/206.43-548.1meV). Our results suggest that heavy metal ion (Cr3+, Cd2+, Co2+ and Pb2+) d↓ orbitals hybridize with the paired-spin X-Zn-Fe d↓-d↓-d↑↓ orbitals to decrease the average polarization angles (-29.78 to 44.71°), qualitatively enhancing the photovoltage response selective potentials (39.57-487.84meV). The fluorescent kinetic analysis shows that both first-order and second-order equilibrium adsorption isotherms are in line and meet the Langmuir and Freundlich modes. Highly selective fluorescence detection of Co2+, Cr3+ and Cd2+ can be achieved using Fe3O4-BiFeO3 (Langmuir mode), (MgZn)Fe2O4-BiFeO3 and (MnZn)Fe2O4-BiFeO3 (Freundlich mode), respectively. Where the corresponding max adsorption capacities (qmax) are 1.5-1.94, 35.65 and 43.7 multiple, respectively, being more competitive than that of other heavy metal ions. The present bio-synthesized method might be relevant for high-photostability fluorescent spinel-perovskite nanocomposites, for design of heavy metal ion sensors.

6.
Nanoscale Res Lett ; 12(1): 136, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28235371

RESUMO

High-fluorescent p-X-ferrites (XFe2O4; XFO; X = Fe, Cr, Mn, Co, or Ni) embedded in n-hematite (Fe2O3) surfaces were successfully fabricated via a facile bio-approach using Shewanella oneidensis MR-1. The results revealed that the X ions with high/low work functions modify the unpaired spin Fe2+-O2- orbitals in the XFe2O4 lattices to become localized paired spin orbitals at the bottom of conduction band, separating the photovoltage response signals (73.36~455.16/-72.63~-32.43 meV). These (Fe2O3)-O-O-(XFe2O4) interfacial coupling behaviors at two fluorescence emission peaks (785/795 nm) are explained via calculating electron-hole effective masses (Fe2O3-FeFe2O4 17.23 × 10-31 kg; Fe2O3-CoFe2O4 3.93 × 10-31 kg; Fe2O3-NiFe2O4 11.59 × 10-31 kg; Fe2O3-CrFe2O4 -4.2 × 10-31 kg; Fe2O3-MnFe2O4 -11.73 × 10-31 kg). Such a system could open up a new idea in the design of photovoltage response biosensors.

7.
Nanoscale Res Lett ; 11(1): 543, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27928781

RESUMO

Ferrites-bismuth ferrite is an intriguing option for medical diagnostic imaging device due to its magnetoelectric and enhanced near-infrared fluorescent properties. However, the embedded XFO nanoparticles are randomly located on the BFO membranes, making implementation in devices difficult. To overcome this, we present a facile bio-approach to produce XFe2O4-BiFeO3 (XFO-BFO) (X = Cr, Mn, Co, or Ni) membranes using Shewanella oneidensis MR-1. The perovskite BFO enhances the fluorescence intensity (at 660 and 832 nm) and surface potential difference (-469 ~ 385 meV and -80 ~ 525 meV) of the embedded spinel XFO. This mechanism is attributed to the interfacial coupling of the X-Fe (e- or h+) and O-O (h+) interfaces. Such a system could open up new ideas in the design of environmentally friendly fluorescent membranes.

8.
Nanoscale Res Lett ; 10(1): 967, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26061445

RESUMO

We elucidated a number of facets regarding glutathione (GSH)-bismuth ferrite (BiFeO3, BFO) interactions and reactivity that have previously remained unexplored on a molecular level. In this approach, the cation-modified reduced GSH (or oxidised glutathione (GS·)) formed on the (111)-oriented BiFeO3 membrane (namely BFO-(111)) can serve as an efficient quencher, and the luminescence mechanism is explained in aqueous conditions. Notably, we suggest the use of Fe(2+)↓ ion as an electron donor and K(+) ion as an electron acceptor to exert a "gluing" effect on the glutamic acid (Glu) and glycine (Gly) side chains, producing an exposed sulfhydryl (-SH) configuration. This method may enable the rational design of a convenient platform for biosensors.

9.
J Hazard Mater ; 294: 47-56, 2015 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25841086

RESUMO

Understanding how plutonium (Pu) doping affects the crystalline zircon structure is very important for risk management. However, so far, there have been only a very limited number of reports of the quantitative simulation of the effects of the Pu charge and concentration on the phase transition. In this study, we used density functional theory (DFT), virtual crystal approximation (VCA), and two-dimensional correlation analysis (2D-CA) techniques to calculate the origins of the structural and electronic transitions of Zr1-cPucSiO4 over a wide range of Pu doping concentrations (c=0-10mol%). The calculations indicated that the low-angular-momentum Pu-fxy-shell electron excites an inner-shell O-2s(2) orbital to create an oxygen defect (VO-s) below c=2.8mol%. This oxygen defect then captures a low-angular-momentum Zr-5p(6)5s(2) electron to form an sp hybrid orbital, which exhibits a stable phase structure. When c>2.8mol%, each accumulated VO-p defect captures a high-angular-momentum Zr-4dz electron and two Si-pz electrons to create delocalized Si(4+)→Si(2+) charge disproportionation. Therefore, we suggest that the optimal amount of Pu cannot exceed 7.5mol% because of the formation of a mixture of ZrO8 polyhedral and SiO4 tetrahedral phases with the orientation (10-1). This study offers new perspective on the development of highly stable zircon-based solid solution materials.


Assuntos
Plutônio/química , Silicatos/química , Zircônio/química , Simulação por Computador , Elétrons , Modelos Químicos
10.
J Mol Model ; 21(4): 91, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25786830

RESUMO

Understanding how temperature affects the electronic transitions of BFO is important for design of BiFeO3 (BFO)-based temperature-sensitive device. Hitherto, however, there have been only very limited reports of the quantitative simulation. Here, we used density functional theory (DFT) and two-dimensional correlation analysis (2D-CA) techniques to calculate the systematic variations in electronic transitions of BFO crystal, over a range of temperature (50~1500 K). The results suggest that the heat accumulation accelerates the O-2p(4) orbital splitting, inducing the Fe(3+)-3d(5) → Fe(2+)-3d(5)d(0) charge disproportionation. The origin is observed as the temperature-dependent electron transfer process changes from threefold degeneracy to twofold degeneracy. Additionally, the crystallographic orientation (111) can be used to control the 2p-hole-induced electronic transition as O → unoccupied Fe(3+)-3d(5), in comparison to the O → Bi-6p(3) + Fe(3+)-3d(5)d(0) on the orientations (001) and (101). This study offers new perspective on the improvement of BFO-based temperature-sensitive device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...