Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991128

RESUMO

Liver fibrosis is a condition characterized by aberrant proliferation of connective tissue in the liver resulting from diverse etiological factors. G protein-coupled receptor GPR55 has recently been identified as a regulator of liver diseases. Herein, we report the discovery of a cyclic peptide P1-1 that antagonizes GPR55 and suppresses collagen secretion in hepatic stellate cells. The alanine scanning and docking study was carried out to predict the binding mode and allowed for further structural optimization of peptide antagonists for GPR55. The subsequent in vivo study demonstrated that P1-1 ameliorates CCl4-induce and MCD-diet-induce acute liver inflammation and fibrosis. Further study indicates that P1-1 reduces reactive oxygen species (ROS) production, attenuates ER stress, and inhibits mitochondria-associated hepatocyte apoptosis. In this work, we provided the first successful example of antagonizing GPR55 for liver inflammation and fibrosis, which validates GPR55 as a promising target for the treatment of liver fibrosis and affords a high-potent GPR55 antagonist P1-1 as a potential therapeutic candidate.

2.
J Med Chem ; 67(8): 6624-6637, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38588467

RESUMO

The increased remodeling of the extracellular matrix (ECM) in pulmonary fibrosis (PF) generates bioactive ECM fragments called matricryptins, which include elastin-derived peptides (EDPs). The interaction between EDPs and their receptors, including elastin-binding protein (EBP), plays a crucial role in exacerbating fibrosis. Here, we present LXJ-02 for the first time, a novel ultralong-acting inhibitor that disrupts the EDPs/EBP peptide-protein interaction, promoting macrophages to secrete matrix metalloproteinase-12 (MMP-12), and showing great promise as a stable peptide. MMP-12 has traditionally been implicated in promoting inflammation and fibrosis in various acute and chronic diseases. However, we reveal a novel role of LXJ-02 that activates the macrophage-MMP-12 axis to increase MMP-12 expression and degrade ECM components like elastin. This leads to the preventing of PF while also improving EDP-EBP interaction. LXJ-02 effectively reverses PF in mouse models with minimal side effects, holding great promise as an excellent therapeutic agent for lung fibrosis.


Assuntos
Desenho de Fármacos , Elastina , Fibrose Pulmonar , Receptores de Superfície Celular , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Animais , Camundongos , Elastina/química , Elastina/metabolismo , Humanos , Metaloproteinase 12 da Matriz/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/síntese química , Camundongos Endogâmicos C57BL , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino
3.
Acta Pharm Sin B ; 14(3): 1283-1301, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486997

RESUMO

The role of co-agonists of glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR) in chronic kidney disease (CKD) remains unclear. Herein we found that GLP-1R and GCGR expression levels were lower in the kidneys of mice with CKD compared to healthy mice and were correlated with disease severity. Interestingly, GLP-1R or GCGR knockdown aggravated the progression of kidney injury in both diabetic db/db mice and non-diabetic mice undergoing unilateral ureteral obstruction (UUO). Based on the importance of GLP-1R and GCGR in CKD, we reported a novel monomeric peptide, 1907-B, with dual-agonism on both GLP-1R and GCGR. The data confirmed that 1907-B had a longer half-life than long-acting semaglutide in rats or cynomolgus monkeys (∼2-3 fold) and exhibited better therapeutic contribution to CKD than best-in-class monoagonists, semaglutide, or glucagon, in db/db mice and UUO mice. Various lock-of-function models, including selective pharmacological activation and genetic knockdown, confirmed that 1907-B's effects on ameliorating diabetic nephropathy in db/db mice, as well as inhibiting kidney fibrosis in UUO mice, were mediated through GLP-1 and glucagon signaling. These findings highlight that 1907-B, a novel GLP-1R and GCGR co-agonist, exerts multifactorial improvement in kidney injuries and is an effective and promising therapeutic option for CKD treatment.

4.
Acta Pharm Sin B ; 13(2): 542-558, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873175

RESUMO

Nonalcoholic fatty liver disease (NAFLD), especially nonalcoholic steatohepatitis (NASH), is a common hepatic manifestation of metabolic syndrome. However, there are no effective therapy to treat this devastating disease. Accumulating evidence suggests that the generation of elastin-derived peptides (EDPs) and the inhibition of adiponectin receptors (AdipoR)1/2 plays essential roles in hepatic lipid metabolism and liver fibrosis. We recently reported that the AdipoR1/2 dual agonist JT003 significantly degraded the extracellular matrix (ECM) and ameliorated liver fibrosis. However, the degradation of the ECM lead to the generation of EDPs, which could further alter liver homeostasis negatively. Thus, in this study, we successfully combined AdipoR1/2 agonist JT003 with V14, which acted as an inhibitor of EDPs-EBP interaction to overcome the defect of ECM degradation. We found that combination of JT003 and V14 possessed excellent synergistic benefits on ameliorating NASH and liver fibrosis than either alone since they compensate the shortage of each other. These effects are induced by the enhancement of the mitochondrial antioxidant capacity, mitophagy, and mitochondrial biogenesis via AMPK pathway. Furthermore, specific suppression of AMPK could block the effects of the combination of JT003 and V14 on reduced oxidative stress, increased mitophagy and mitochondrial biogenesis. These positive results suggested that this administration of combination of AdipoR1/2 dual agonist and inhibitor of EDPs-EBP interaction can be recommended alternatively for an effective and promising therapeutic strategy for the treatment of NAFLD and NASH related fibrosis.

5.
J Med Chem ; 66(7): 4689-4702, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36938613

RESUMO

Liver fibrosis is the undesirable result of excessive deposition of the extracellular matrix (ECM), and elastin is known as one of the key ECM components. Under specific pathological conditions, elastin undergoes degradation to produce elastin-derived peptides (EDPs), which bind to elastin-binding protein (EBP) to activate corresponding signal pathways, thus accelerating fibrosis progression. Herein, we describe the discovery of novel cyclic peptides that function as potent and stable inhibitors to interfere with the peptide-protein interaction between EDPs and EBP. Remarkably, CXJ-2 exhibited potent activities to inhibit the PI3K/ERK pathway and decrease hepatic stellate cell proliferation and migration. The subsequent in vivo study demonstrated that CXJ-2 possessed potent antifibrotic efficacy in ameliorating CCl4-induced liver fibrosis. This work provides a successful pharmacological strategy for the development of novel inhibitors of EDPs-EBP interaction, which sheds new light on how cyclic peptides disrupt peptide-protein interaction and may also provide new structure-oriented therapeutic candidates in liver fibrosis.


Assuntos
Elastina , Peptídeos Cíclicos , Humanos , Elastina/metabolismo , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/uso terapêutico , Peptídeos/farmacologia , Cirrose Hepática/tratamento farmacológico
6.
Acta Pharm Sin B ; 12(5): 2443-2461, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646543

RESUMO

Currently, there is still no effective curative treatment for the development of late-stage liver fibrosis. Here, we have illustrated that TB001, a dual glucagon-like peptide-1 receptor/glucagon receptor (GLP-1R/GCGR) agonist with higher affinity towards GCGR, could retard the progression of liver fibrosis in various rodent models, with remarkable potency, selectivity, extended half-life and low toxicity. Four types of liver fibrosis animal models which were induced by CCl4, α-naphthyl-isothiocyanate (ANIT), bile duct ligation (BDL) and Schistosoma japonicum were used in our study. We found that TB001 treatment dose-dependently significantly attenuated liver injury and collagen accumulation in these animal models. In addition to decreased levels of extracellular matrix (ECM) accumulation during hepatic injury, activation of hepatic stellate cells was also inhibited via suppression of TGF-ß expression as well as downstream Smad signaling pathways particularly in CCl4-and S. japonicum-induced liver fibrosis. Moreover, TB001 attenuated liver fibrosis through blocking downstream activation of pro-inflammatory nuclear factor kappa B/NF-kappa-B inhibitor alpha (NFκB/IKBα) pathways as well as c-Jun N-terminal kinase (JNK)-dependent induction of hepatocyte apoptosis. Furthermore, GLP-1R and/or GCGR knock-down results represented GCGR played an important role in ameliorating CCl4-induced hepatic fibrosis. Therefore, TB001 can be used as a promising therapeutic candidate for the treatment of multiple causes of hepatic fibrosis demonstrated by our extensive pre-clinical evaluation of TB001.

7.
Biomolecules ; 11(9)2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34572586

RESUMO

Metformin is a widely used antidiabetic drug for cancer prevention and treatment. However, the overproduction of lactic acid and its inefficiency in cancer therapy limit its application. Here, we demonstrate the synergistic effects of the lactate/GPR81 blockade (3-hydroxy-butyrate, 3-OBA) and metformin on inhibiting cancer cells growth in vitro. Simultaneously, this combination could inhibit glycolysis and OXPHOS metabolism, as well as inhibiting tumor growth and reducing serum lactate levels in tumor-bearing mice. Interestingly, we observed that this combination could enhance the functions of Jurkat cells in vitro and CD8+ T cells in vivo. In addition, considering that 3-OBA could recover the inhibitory effects of metformin on PD-1 expression, we further determined the dual blockade effects of PD-1/PD-L1 and lactate/GPR81 on the antitumor activity of metformin. Our results suggested that this dual blockade strategy could remarkably enhance the anti-tumor effects of metformin, or even lead to tumor regression. In conclusion, our study has proposed a novel and robust strategy for a future application of metformin in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Antígeno B7-H1/metabolismo , Ácido Láctico/metabolismo , Metformina/farmacologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Ácido 3-Hidroxibutírico/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos
9.
Acta Pharm Sin B ; 11(1): 100-111, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33532183

RESUMO

The antimicrobial peptide APKGVQGPNG (named YD), a natural peptide originating from Bacillus amyloliquefaciens CBSYD1, exhibited excellent antibacterial and antioxidant properties in vitro. These characteristics are closely related to inflammatory responses which is the central trigger for liver fibrosis. However, the therapeutic effects of YD against hepatic fibrosis and the underlying mechanisms are rarely studied. In this study, we show that YD improved liver function and inhibited the progression of liver fibrosis by measuring the serum transaminase activity and the expression of α-smooth muscle actin and collagen I in carbon tetrachloride-induced mice. Then we found that YD inhibited the level of miR-155, which plays an important role in inflammation and liver fibrosis. Bioinformatics analysis and luciferase reporter assay indicate that Casp12 is a new target of miR-155. We demonstrate that YD significantly decreases the contents of inflammatory cytokines and suppresses the NF-κB signaling pathway. Further studies show that transfection of the miR-155 mimic in RAW264.7 cells partially reversed the YD-mediated CASP12 upregulation, the downregulated levels of inflammatory cytokines, and the inactivation of the NF-κB pathways. Collectively, our study indicates that YD reduces inflammation through the miR-155-Casp12-NF-κB axis during liver fibrosis and provides a promising therapeutic candidate for hepatic fibrosis.

10.
Nat Commun ; 11(1): 5807, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199780

RESUMO

Chronic nonalcoholic steatohepatitis (NASH) is a metabolic disorder that often leads to liver fibrosis, a condition with limited therapy options. Adiponectin is an adipocytokine that regulates glucose and lipid metabolism via binding to its receptors AdipoR1 and AdipoR2, and AdipoRs signaling is reported to enhance fatty acid oxidation and glucose uptake. Here, we synthesize and report an adiponectin-based agonist JT003, which potently improves insulin resistance in high fat diet induced NASH mice and suppresses hepatic stellate cells (HSCs) activation in CCl4 induced liver fibrosis. Mechanistic studies indicate that JT003 simultaneously stimulates AdipoR1- and AdipoR2- mediated signaling pathways as well as the PI3K-Akt pathway. Moreover, JT003 treatment significantly improves ER-mitochondrial axis function, which contributes to the reduced HSCs activation. Thus, the AdipoR1/AdipoR2 dual agonist improves both NASH and fibrosis in mice models, which provides the pharmacological and biological foundation for developing AdipoRs-based therapeutic agents on liver fibrosis.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores de Adiponectina/agonistas , Adenilato Quinase/metabolismo , Alanina Transaminase/sangue , Animais , Tetracloreto de Carbono , Dieta Hiperlipídica , Modelos Animais de Doenças , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibrose , Células Hep G2 , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Resistência à Insulina , Cirrose Hepática/sangue , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/sangue , Obesidade/sangue , Obesidade/complicações , Obesidade/tratamento farmacológico , PPAR alfa/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Domínios Proteicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Adiponectina/metabolismo , Transdução de Sinais , Aumento de Peso/efeitos dos fármacos
11.
Life Sci ; 229: 200-209, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31047894

RESUMO

AIMS: The rapeseed protein derived peptide DHNNPQIR (named as RAP-8) has been previously reported to possess antioxidant activity and alleviate liver fibrosis. The purpose of the present study was to investigate the potential crucial pathways involved in ameliorating liver fibrosis of RAP-8. MAIN METHODS: Next-generation sequencing of messenger RNA (RNA-Seq) analysis of the fibrotic and RAP-8 treated mice was performed. Western blot, qPCR and flow cytometry detection analysis were conducted to measure cell cycle and oxidative stress in LX-2 cells and liver samples. KEY FINDINGS: 588 overlapped differentially expressed genes were obtained from a batch of genes RAP-8 altered. Gene Ontology enrichment analysis revealed that changes in the most significant modules were mainly enriched in cell division, nuclear division and mitotic cell cycle process, while alterations in Kyoto Encyclopedia of Genes and Genomes were mainly enriched in cell cycle. Thereafter, according to the co-expression network analysis, the regulations of three core genes (Cenpp, Cyp2c55, Serpinh1) were verified that might be targets for treating liver fibrosis. Furthermore, through experimental verification, we demonstrated that RAP-8 induced cell cycle arrest and prevents oxidation stress. SIGNIFICANCE: As a promising therapeutic candidate for hepatic fibrosis treating, RAP-8 exhibited anti-fibrotic effects via exerting cell cycle arrest and inhibiting oxidative stress.


Assuntos
Brassica rapa/química , Ciclo Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Cirrose Hepática/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteínas de Plantas/farmacologia , Animais , Perfilação da Expressão Gênica , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
RSC Adv ; 9(4): 1909-1917, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35516120

RESUMO

Antibody-drug conjugates (ADCs) have recently received enormous attention as an attractive approach for cancer therapy. Although ADC design has been believed to be important for the relative efficacy of ADCs, it remains unexplored how the structural characteristics of ADCs would impact the internalization process and intracellular trafficking of the molecules. Herein, we report our efforts in investigating the cellular endocytosis implications of the conjugation and linker chemistry in designing antibody-based agents. A series of anti-MUC1 single-chain variable fragment (scFv-SM3) conjugates were designed with unique structural characteristics ranging from conjugation methods, sites of attachment and linker chemistry. In vitro confocal imaging showed that both random lysine-conjugation and site-specific conjugation, including C-terminus modification or internal site conjugation, could afford antibody conjugates with similar binding affinity and cellular uptake to target-expressing cells. Time-course internalization studies demonstrated that SM3-conjugates with short polyethylene glycol linkers outcompeted those that lack any hydrophilic linkers for higher cellular uptake and faster internalization rate. The SM3-conjugates with the highest affinity and internalization rate were also tested in mouse xenograft models using MUC1-overexpressing tumor cells. Our results indicate that the linker and conjugation chemistry play an important role in the internalization process of antibody conjugates, and this in turn could impact the therapeutic effects of ADCs.

13.
Mol Pharm ; 16(1): 371-381, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30543441

RESUMO

Rapeseed protein hydrolysates have recently shown in vitro antioxidant and anti-inflammatory activities. However, scant data exist about their in vivo activities. Here, we report that the peptide DHNNPQIR (hereinafter referred to as RAP-8), a bioactive peptide originated from rapeseed protein, exhibits excellent in vivo efficacy in mouse models of nonalcoholic steatohepatitis (NASH) and hepatic fibrosis. We demonstrated that RAP-8 significantly reduced hepatic steatosis and improved insulin resistance and lipid metabolism. Furthermore, RAP-8 showed markedly reduced hepatic inflammation, fibrosis, liver injury, and metabolic deterioration. In particular, RAP-8 directly suppressed fibrosis-associated gene expression, including α-smooth muscle actin (α-Sma) and collagen type I (Col-1α) in the liver of mice in vivo. In addtion, RAP-8 significantly decreased macrophage infiltration and reduced pro-inflammatory cytokines secretion. Finally, we found that RAP-8 administration significantly decreased oxidative stress-induced apoptosis in liver injury induced by CCl4. Therefore, our results suggest that RAP-8 could be available for treatment of NASH and NASH-related metabolic disorders as a potential therapeutic candidate.


Assuntos
Antioxidantes/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas de Plantas/uso terapêutico , Animais , Brassica rapa/química , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Masculino , Doenças Metabólicas/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/uso terapêutico , Proteínas S100/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...