Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 158(21)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37278478

RESUMO

Understanding the electric double layer (EDL) of the metal electrode-electrolyte interface is essential to electrochemistry and relevant disciplines. In this study, potential-dependent electrode Sum Frequency Generation (SFG) intensities of polycrystalline gold electrodes in HClO4 and H2SO4 electrolytes were thoroughly analyzed. The potential of zero charges (PZC) of the electrodes was -0.06 and 0.38 V in HClO4 and H2SO4, respectively, determined from differential capacity curves. Without specific adsorption, the total SFG intensity was dominated by the contribution from the Au surface and increased similar to that of the visible (VIS) wavelength scanning, which pushed the SFG process closer to the double resonant condition in HClO4. However, the EDL contributed about 30% SFG signal with specific adsorption in H2SO4. Below PZC, the total SFG intensity was dominated by the Au surface contribution and increased with potential at a similar slope in these two electrolytes. Around PZC, as the EDL structure became less ordered and the electric field changed direction, there would be no EDL SFG contribution. Above PZC, the total SFG intensity increased much more rapidly with potential in H2SO4 than in HClO4, which suggested that the EDL SFG contribution kept increasing with more specific adsorbed surface ions from H2SO4.

2.
Chem Commun (Camb) ; 56(67): 9723-9726, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32701086

RESUMO

Using broadband sum frequency generation (BB-SFG) spectroscopy, the effect of surface structure on the adsorption states of linearly bonded CO (COL) on a Pt electrode was thoroughly analyzed. Two overlapped SFG peaks with different linewidths and electrochemical Stark slopes were identified, which correspond to COL in different surface configurations.

3.
Phys Chem Chem Phys ; 21(45): 25047-25053, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31690901

RESUMO

As an important pathway for energy storage and a key reaction in the carbon cycle, the CO2 electrochemical reduction reaction has recently gained significant interest. A variety of catalysts have been used to approach this topic experimentally and theoretically; however, the molecular level insight into the reaction mechanism is lacking due to the complexity of the surface processes and the challenges in probing the intermediate species. In this study, CO2 reduction reactions on polycrystalline Cu and Au electrodes were investigated in 0.1 M CO2-saturated NaHCO3 solution. In situ sum frequency generation (SFG) spectroscopy has been adopted to access the intermediates and products on the metal electrodes. On the Au electrode, only linearly adsorbed CO could be detected, and the reduction produced no hydrocarbon species. On the Cu electrode, C-H stretching vibrations corresponding to surface-adsorbed ethoxy species were observed, but no CO vibrations can be detected with SFG. The results revealed that the CO randomly adsorbed on the Cu surface, and the multiple orientations of the adsorbed species may be the reason for the formation of C-C bonding. These results demonstrate direct molecular level evidence for different reaction pathways on the Cu and Au electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...