Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 32(2): 771-782, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35091909

RESUMO

In the present study, a novel composite nanogel based on fluorescence resonance energy transfer (FRET) and its application for photodynamic therapy is reported. First of all, nanoparticles of silica doped with Nile Red (NR) were prepared by Stöber method, then they were decorated by γ-methacryloxypropyltrimethoxysilane (MPS) to prepare MPS decorated NR@SiO2 nanoparticles, and finally they were copolymerized with N-isopropylacrylamide (NIPAm) and Pyropheophorbide-a (Ppa) by free radical copolymerization, and composite nanogel of NR@SiO2/PNIPAm-co-Ppa was fabricated. The microstructure of the as-prepared nanogel was characterized by Fourier transform infrared spectrum (FTIR), photoluminescence (PL), UV-Visible spectrophotometer (UV-Vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM). PL spectrum indicated that, under irradiation of visible light source, energy can be transferred from NR to Ppa. UV-Vis spectrum demonstrated that aggregation of Ppa is prevented efficiently and Ppa exists as "monomer" state in the composite nanogel. Under irradiation of laser, singlet oxygen (1O2) can be produced efficiently by excited nanogel. The in vitro cytotoxicity test showed that HeLa cells can be killed by the composite nanogel.


Assuntos
Resinas Acrílicas , Nanogéis/química , Oxazinas , Fotoquimioterapia , Dióxido de Silício , Células HeLa , Humanos , Nanopartículas/química , Polímeros/química
2.
J Biomater Sci Polym Ed ; 33(3): 313-328, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34586977

RESUMO

In the present study, a novel nanogel of HPC-PMAA/PpIX with thermo- and pH sensitive performance and its application in cancer photodynamic therapy is reported. HPC-PMAA/PpIX nanogels were prepared by free radical polymerization method with HPC as template, hydroxypropyl cellulose (HPC), methyl acrylic acid (MAA), protoporphyrin IX (PpIX) and N,N'-methylene bisacrylamide (BIS) as raw materials. The as-prepared nanogels were characterized by Fourier transform infrared (FTIR), photoluminescence (PL) and UV-visible spectrophotometer (UV-vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM). PL and UV-vis spectra demonstrate that PpIX is incorporated into HPC-PMAA by covalent bonds, and its aggregation is prevented. Moreover, the as-prepared nanogels can be dispersed in water over 1 week, significant singlet oxygen can be produced under irradiation of laser. With tumor cell of HepG2 as model cell, the nanogels are biocompatible with cell viability of >85% even at high concentrations of the PpIX in vitro. In addition, the HPC-PMAA/PpIX nanogels show photo-dependent toxicity in the concentration range of 10 µg/mL of PpIX, suggesting that HPC-PMAA/PpIX nanogels have potential for the treatment of photodynamic therapy (PDT).


Assuntos
Fotoquimioterapia , Celulose/análogos & derivados , Nanogéis , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Ácidos Polimetacrílicos , Protoporfirinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA