Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 127: 106-11, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23131629

RESUMO

Aerobic granules (AG) were carboxylated and Ce(III) was incorporated to obtain modified granuels (Ce(III)-MAG) for removal of fluoride from aqueous solutions. The Ce(III)-MAG was characterized by SEM, FTIR, XRD and pH(pzc), and the introduction of carboxyl groups and Ce(III) was confirmed. The adsorption capacity of Ce(III)-MAG for fluoride was 45.80 mg/g at neutral pH, an increase of 359% compared to the capacity of pristine AG. Adsorption was highest at pH range of 3.0-5.0. A positive effect on fluoride removal in the order of K(+) ≈ Mg(2+) > Ca(2+) > Na(+) and a negative effect in the order of NO(3)(-) > Cl(-) > SO(4)(2-) > HCO(3)(-) > PO(4)(3-) was observed. Fluoride adsorption followed the Redlich-Peterson model and the pseudo-first order model with correlation factors of 0.999 and 0.950, respectively. Ce(III)-MAG held up to 790 bed volumes and the effluent fluoride concentration remained below 1.0mg/L (influent fluoride 10mg/L).


Assuntos
Bactérias Aeróbias/química , Cério/análise , Fluoretos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Fluoretos/análise , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Difração de Raios X
2.
J Hazard Mater ; 179(1-3): 431-7, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20362391

RESUMO

Disintegrated aerobic granules (DAG) as an effective biosorbent had great potential to remove Cu(II) from aqueous solution. The effects of solution pH value, contact time, initial Cu(II) concentration on the biosorption were investigated. Kinetic studies indicate that pseudo-second-order model with correlation coefficients of 0.9999 best fits the Cu(II) biosorption process. Investigation of the biosorption mechanisms shows that Cu(II) biosorption is associated with a significant release of Ca(II). The adsorption capacity of extracted extracellular polymeric substances (EPS) was 2.34 times as much as that of pristine DAG, indicating the significant role of EPS in adsorption. In order to determine the role of different functional groups, DAG was chemically modified to block specific functional groups and was then used in the adsorption of Cu(II). The anionic carboxyl group, was identified as the key binding site for the cationic Cu(II). Results reveal that ion exchange is the most important biosorption mechanism but other mechanisms to some extent like electrostatic interaction, involving in functional groups, also play a part.


Assuntos
Cobre/química , Material Particulado/química , Adsorção , Aerobiose , Análise Custo-Benefício , Concentração de Íons de Hidrogênio , Troca Iônica , Cinética , Microscopia Eletrônica de Varredura , Modelos Químicos , Tamanho da Partícula , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...