Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 323: 121169, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36773685

RESUMO

To produce real-time ground-level information on particulate matter with a diameter equal to or less than 2.5 µm (PM2.5), many studies have explored the applicability of satellite data, particularly aerosol optical depth (AOD). However, many of the techniques used are computationally demanding; to overcome these challenges, machine learning(ML)-based research has been on the rise. Here, we used ML techniques to directly estimate ground-level PM2.5 concentrations over South Korea using top-of-atmosphere (TOA) reflectance from the Geostationary Ocean Color Imager I (GOCI-I) and its next generation GOCI-II with improved spatial, spectral, and temporal resolutions. Three ML techniques were used to estimate ground-level PM2.5 concentrations: random forest, light gradient boosting machine (LGBM), and artificial neural network. Three schemes were examined based on the input feature composition of the GOCI spectral bands: scheme 1 using all GOCI-I bands, scheme 2 using only GOCI-II bands that overlap with GOCI-I bands, and scheme 3 using all GOCI-II bands. The results showed that LGBM performed better than the other ML models. GOCI-II-based schemes 2 and 3 (determination of coefficient (R2) = 0.85 and 0.85 and root-mean-square-error (RMSE) = 7.69 and 7.82 µg/m3, respectively) performed slightly better than GOCI-I-based scheme 1 (R2 = 0.83 and RMSE = 8.49 µg/m3). In particular, TOA reflectance at a new channel (380 nm) of GOCI-II was identified as the most contributing variable, given its high sensitivity to aerosols. The long-term estimation of PM2.5 concentrations using the proposed models was examined for ground stations located in two major cities. GOCI-II-based models produced a more detailed spatial distribution of PM2.5 concentrations owing to their higher spatial resolution (i.e., 250 m). The use of TOA reflectance data, instead of AOD and other aerosol products commonly used in previous studies, reduced the missing rate of the estimated ground-level PM2.5 concentrations by up to 50%. Our results indicate that the proposed approach using TOA reflectance data from geostationary satellite sensors has great potential for estimating ground-level PM2.5 concentrations for operational purposes.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental/métodos , Material Particulado/análise , Aerossóis/análise , Atmosfera , Oceanos e Mares , Poluentes Atmosféricos/análise , Poluição do Ar/análise
2.
Med Phys ; 45(11): 5277-5282, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30133716

RESUMO

PURPOSE: Fabricate an acrylic disk radiation sensor (ADRS) and characterize the photoluminescence signal generated from the optical device as basis for the development and evaluation of a new dosimetry system for pencil beam proton therapy. METHODS: Based on the characteristics of the proposed optical dosimetry sensor, we established the relation between the photoluminescence output and the applied dose using an ionization chamber. Then, we obtained the relative integral depth dose profiles using the photoluminescence signal generated by pencil beam irradiation at energies of 99.9 and 162.1 MeV, and compared the results with the curve measured using a Bragg peak ionization chamber. RESULTS: The relation between the photoluminescence output and applied dose was linear. In addition, the ADRS was dose independent for beam currents up to 6 Gy/min, and the calibration factor for energy was close to 1. Hence, the energy dependence on the optical device can be disregarded. The integral depth dose profiles obtained for the ADRS suitable agreed with the curve measured in the Bragg peak ionization chamber without requiring correction. CONCLUSIONS: These results suggest that the ADRS is suitable for dosimetry measurements in pencil beam scanning, and it will be employed as a low-cost and versatile dosimetry sensor in upcoming developments.


Assuntos
Terapia com Prótons/instrumentação , Radiometria/instrumentação , Dosagem Radioterapêutica
3.
Acta Oncol ; 57(10): 1359-1366, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30004264

RESUMO

BACKGROUND: The aim of the present study was to verify the dosimetric accuracy of two-dimensional (2D) in vivo rectal dosimetry using an endorectal balloon (ERB) with unfoldable EBT3 films for high-dose-rate (HDR) brachytherapy for cervical cancer. The clinical applicability of the technique was discussed. MATERIAL AND METHODS: ERB inflation makes the EBT3 films unrolled, whereas its deflation makes them rolled. Patient-specific quality assurance (pQA) tests were performed in 20 patient plans using an Ir-192 remote afterloading system and a water-filled cervical phantom with the ERB. The dose distributions measured in ERBs were compared with those of the treatment plans. RESULTS: The absolute dose profiles measured by the ERBs were in good agreement with those of treatment plans. The global gamma passing rates were 96-100% and 91-100% over 20 pQAs under the criteria of 3%/3 mm and 3%/2 mm, respectively, with a 30% low-dose threshold. Dose-volume histograms of the rectal wall were obtained from the measured dose distributions and showed small volume differences less than 2% on average from the patients' plans over the entire dose interval. The positioning error of the applicator set was detectable with high sensitivity of 12% dose area variation per mm. Additionally, the clinical applicability of the ERB was evaluated in volunteers, and none of them felt any pain when the ERB was inserted or removed. CONCLUSIONS: The 2D in vivo rectal dosimetry using the ERB with EBT3 films was effective and might be clinically applicable for HDR brachytherapy for cervical and prostate cancers to monitor treatment accuracy and consistency as well as to predict rectal toxicity.


Assuntos
Braquiterapia/métodos , Reto/efeitos da radiação , Neoplasias do Colo do Útero/radioterapia , Feminino , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...