Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(1): 537-547, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-27936581

RESUMO

The growth characteristics of Ta2O5 thin films by atomic layer deposition (ALD) were examined using Ta(NtBu)(NEt2)3 (TBTDET) and Ta(NtBu)(NEt2)2Cp (TBDETCp) as Ta-precursors, where tBu, Et, and Cp represent tert-butyl, ethyl, and cyclopentadienyl groups, respectively, along with water vapor as oxygen source. The grown Ta2O5 films were amorphous with very smooth surface morphology for both the Ta-precursors. The saturated ALD growth rates of Ta2O5 films were 0.77 Å cycle-1 at 250 °C and 0.67 Å cycle-1 at 300 °C using TBTDET and TBDETCp precursors, respectively. The thermal decomposition of the amido ligand (NEt2) limited the ALD process temperature below 275 °C for TBTDET precursor. However, the ALD temperature window could be extended up to 325 °C due to a strong Ta-Cp bond for the TBDETCp precursor. Because of the improved thermal stability of TBDETCp precursor, excellent nonuniformity of ∼2% in 200 mm wafer could be achieved with a step coverage of ∼90% in a deep hole structure (aspect ratio 5:1) which is promising for 3-dimensional architecture to form high density memories. Nonetheless, a rather high concentration (∼7 at. %) of carbon impurities was incorporated into the Ta2O5 film using TBDETCp, which was possibly due to readsorption of dissociated ligands as small organic molecules in the growth of Ta2O5 film by ALD. Despite the presence of high carbon concentration which might be an origin of large leakage current under electric fields, the Ta2O5 film using TBDETCp showed a promising resistive switching performance with an endurance cycle as high as ∼17 500 for resistance switching random access memory application. The optical refractive index of the deposited Ta2O5 films was 2.1-2.2 at 632.8 nm using both the Ta-precursors, and indirect optical band gap was estimated to be ∼4.1 eV for both the cases.

2.
Nanoscale ; 8(36): 16455-66, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27604046

RESUMO

Thermochemical and electronic trapping/detrapping mechanism-based resistance switching in TiO2 is one of the most extensively researched topics in the field of resistance-switching random access memory (ReRAM). In this study, the subtle correlation between the formation and rupture of the Magnéli-based conducting filament (CF), which is the mechanism of non-polar thermochemical-reaction-based switching, and the electron trapping/detrapping at the defect centers, which is the mechanism of bipolar electronic switching, is examined in detail. The chemical interaction between the TiN top electrode and the TiO2 layer generates a stable and immobile electron trapping layer, which is called a "switching layer", whereas the thin region between the just-mentioned switching layer and the remaining Magnéli CF after the thermochemical reset comprises a non-switching layer. The seemingly very complicated switching behavior with respect to the bias polarity, compliance current, and detailed biasing sequence could be reasonably explained by the phenomenological model based on the combined motions of the CF, switching layer, and non-switching layer. Light-induced detrapping experiments further supplement the suggested switching model.

3.
ACS Appl Mater Interfaces ; 8(28): 18215-21, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27347693

RESUMO

To replace or succeed the present NAND flash memory, resistive switching random access memory (ReRAM) should be implemented in the vertical-type crossbar array configuration. The ReRAM cell must have a highly reproducible resistive switching (RS) performance and an electroforming-free, self-rectifying, low-power-consumption, multilevel-switching, and easy fabrication process with a deep sub-µm(2) cell area. In this work, a Pt/Ta2O5/HfO2-x/TiN RS memory cell fabricated in the form of a vertical-type structure was presented as a feasible contender to meet the above requirements. While the fundamental RS characteristics of this material based on the electron trapping/detrapping mechanisms have been reported elsewhere, the influence of the cell scaling size to 0.34 µm(2) on the RS performance by adopting the vertical integration scheme was carefully examined in this work. The smaller cell area provided much better switching uniformity while all the other benefits of this specific material system were preserved. Using the overstressing technique, the nature of RS through the localized conducting path was further examined, which elucidated the fundamental difference between the present material system and the general ionic-motion-related bipolar RS mechanism.

4.
Sci Rep ; 6: 20825, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26864751

RESUMO

Recent claim on the direct observation of a negative capacitance (NC) effect from a single layer epitaxial Pb(Zr0.2,Ti0.8)O3 (PZT) thin film was carefully reexamined, and alternative interpretations that can explain the experimental results without invoking the NC effect are provided. Any actual ferroelectric capacitor has an interfacial layer, and experiment always measures the sum of voltages across the interface layer and the ferroelectric layer. The main observation of decreasing ferroelectric capacitor voltage (VF) for increasing ferroelectric capacitor charge (QF), claimed to be the direct evidence for the NC effect, could be alternatively interpreted by either the sudden increase in the positive capacitance of a ferroelectric capacitor or decrease in the voltage across the interfacial layer due to resistance degradation. The experimental time-transient VF and QF could be precisely simulated by these alternative models that fundamentally assumes the reverse domain nucleation and growth. Supplementary experiments using an epitaxial BaTiO3 film supported this claim. This, however, does not necessarily mean that the realization of the NC effect within the ferroelectric layer is impractical under appropriate conditions. Rather, the circuit suggested by Khan et al. may not be useful to observe the NC effect directly.

5.
Sci Rep ; 5: 15965, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26527044

RESUMO

Resistance switching (RS) devices with ultra-thin Ta2O5 switching layer (0.5-2.0 nm) with a cell diameter of 28 nm were fabricated. The performance of the devices was tested by voltage-driven current-voltage (I-V) sweep and closed-loop pulse switching (CLPS) tests. A Ta layer was placed beneath the Ta2O5 switching layer to act as an oxygen vacancy reservoir. The device with the smallest Ta2O5 thickness (0.5 nm) showed normal switching properties with gradual change in resistance in I-V sweep or CLPS and high reliability. By contrast, other devices with higher Ta2O5 thickness (1.0-2.0 nm) showed abrupt switching with several abnormal behaviours, degraded resistance distribution, especially in high resistance state, and much lower reliability performance. A single conical or hour-glass shaped double conical conducting filament shape was conceived to explain these behavioural differences that depended on the Ta2O5 switching layer thickness. Loss of oxygen via lateral diffusion to the encapsulating Si3N4/SiO2 layer was suggested as the main degradation mechanism for reliability, and a method to improve reliability was also proposed.


Assuntos
Óxidos/química , Compostos de Silício/química , Dióxido de Silício/química , Tantálio/química , Condutividade Elétrica , Teste de Materiais/métodos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Nanoestruturas/ultraestrutura
6.
Adv Mater ; 27(25): 3811-6, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25973913

RESUMO

Pt/Ta2 O5 /HfO2- x /Ti resistive switching memory with a new circuit design is presented as a feasible candidate to succeed multilevel-cell (MLC) NAND flash memory. This device has the following characteristics: 3 bit MLC, electroforming-free, self-rectifying, much higher cell resistance than interconnection wire resistance, low voltage operation, low power consumption, long-term reliability, and only an electronic switching mechanism, without an ionic-motion-related mechanism.

7.
ACS Appl Mater Interfaces ; 6(4): 2486-92, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24483129

RESUMO

Topography and leakage current maps of TiO2 films grown by atomic layer deposition on RuO2 electrodes using either a TiCl4 or a Ti(O-i-C3H7)4 precursor were characterized at nanoscale by conductive atomic force microscopy (CAFM). For both films, the leakage current flows mainly through elevated grains and not along grain boundaries. The overall CAFM leakage current is larger and more localized for the TiCl4-based films (0.63 nm capacitance equivalent oxide thickness, CET) compared to the Ti(O-i-C3H7)4-based films (0.68 nm CET). Both films have a physical thickness of ∼20 nm. The nanoscale leakage currents are consistent with macroscopic leakage currents from capacitor structures and are correlated with grain characteristics observed by topography maps and transmission electron microscopy as well as with X-ray diffraction.

8.
ACS Nano ; 8(2): 1584-9, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24417284

RESUMO

The interaction between X-rays and matter is an intriguing topic for both fundamental science and possible applications. In particular, synchrotron-based brilliant X-ray beams have been used as a powerful diagnostic tool to unveil nanoscale phenomena in functional materials. However, it has not been widely investigated how functional materials respond to the brilliant X-rays. Here, we report the X-ray-induced reversible resistance change in 40-nm-thick TiO2 films sandwiched by Pt top and bottom electrodes, and propose the physical mechanism behind the emergent phenomenon. Our findings indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few orders of magnitude, depending on the intensity of impinging X-rays. We found that this effect, combined with the X-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a nonvolatile reversible resistance change. Understanding X-ray-controlled reversible resistance changes can provide possibilities to control initial resistance states of functional materials, which could be useful for future information and energy storage devices.

9.
Nanoscale ; 6(4): 2161-9, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24366553

RESUMO

Ultimate control of the defect distribution and local conduction path in a bipolar resistive switching (BRS) Pt/TiO2/Pt sample, which was in a unipolar reset state, is provided by means of voltage pulsing and the resulting time-transient current analysis. The limited amount of oxygen vacancies in this system allowed reversibly switching-diode-like current-voltage curves, which was also confirmed in another Magnéli-phase-containing Pt/WO3/Pt sample. Such careful control of the defect distribution allowed the achievement of a complementary resistive switching (CRS) curve even from a single switching layer. The unlimited vacancy source in the Pt/TiO2/TiO2-x/Pt sample did not allow the switching-diode type and the CRS behavior. The data retention of the on-state in the BRS was critically dependent on the shape of the rejuvenated conduction channel. The required time to lead to the rejuvenation of the conducting channel was ∼70-100 ns when the threshold voltage for the BRS set of ∼-1 V was applied.


Assuntos
Platina/química , Titânio/química , Tungstênio/química , Condutividade Elétrica
10.
Sci Rep ; 3: 3443, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24309421

RESUMO

Unipolar resistance switching (RS) in TiO2 thin films originates from the repeated formation and rupture of the Magnéli phase conducting filaments through repeated nano-scale phase transitions. By applying the Johnson-Mehl-Avrami (JMA) type kinetic model to the careful analysis on the evolution of transient current in a pulse-switching, it was possible to elucidate the material specific evolution of the Magnéli phase filament. This methodology was applied to the two types of TiO2 films grown by plasma-enhanced atomic layer deposition (PEALD) and sputtering. These two samples have structurally and electrically distinctive properties: PEALD film exhibited high variability in switching parameters and required an electroforming while sputtered film showed higher uniformity without distinct electroforming process. The JMA-type kinetic analysis of the RS behaviors revealed that the rejuvenation of the filament is accomplished by repeated one-dimensional nucleation followed by a two-dimensional growth in PEALD samples, whereas one-dimensional nucleation-free mechanism dominates in sputtered films.

11.
Nanotechnology ; 24(14): 145201, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23507958

RESUMO

Various types of bipolar resistive switching (BRS) at the filament ruptured region by the unipolar resistive switching (URS) reset in the structure Pt/TiO2/Pt were categorized in terms of operation polarity and switching parameters. The differences in BRS behavior, even under identical current-voltage switching, are closely related to the previously performed URS reset parameter, especially the power consumed during the reset process. Various modes of BRS from the URS reset status in the structure Pt/TiO2/Pt are reported, and interpreted in terms of a distinct oxygen vacancy configuration in the ruptured region of a Magnéli filament.

12.
Adv Mater ; 25(14): 1987-92, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23386379

RESUMO

Limiting the location where electron injection occurs at the cathode interface to a narrower region is the key factor for achieving a highly improved RS performance, which can be achieved by including Ru Nanodots. The development of a memory cell structure truly at the nanoscale with such a limiting factor for the electric-field distribution can solve the non-uniformity issue of future ReRAM.

13.
ACS Appl Mater Interfaces ; 4(10): 5338-45, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22999222

RESUMO

The electrical performances of Pt/TiO(2)/Ti/Pt stacked Schottky-type diode (SD) was systematically examined, and this performance is dependent on the chemical structures of the each layer and their interfaces. The Ti layers containing a tolerable amount of oxygen showed metallic electrical conduction characteristics, which was confirmed by sheet resistance measurement with elevating the temperature, transmission line measurement (TLM), and Auger electron spectroscopy (AES) analysis. However, the chemical structure of SD stack and resulting electrical properties were crucially affected by the dissolved oxygen concentration in the Ti layers. The lower oxidation potential of the Ti layer with initially higher oxygen concentration suppressed the oxygen deficiency of the overlying TiO(2) layer induced by consumption of the oxygen from TiO(2) layer. This structure results in the lower reverse current of SDs without significant degradation of forward-state current. Conductive atomic force microscopy (CAFM) analysis showed the current conduction through the local conduction paths in the presented SDs, which guarantees a sufficient forward-current density as a selection device for highly integrated crossbar array resistive memory.

14.
Nanotechnology ; 23(18): 185202, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22516621

RESUMO

A tri-stable memristive switching was demonstrated on a Pt/TiO2/Pt device and its underlying mechanism was suggested through a series of electrical measurements. Tri-stable switching could be initiated from a device in unipolar reset status. The unipolar reset status was obtained by performing an electroforming step on a pristine cell which was then followed by unipolar reset switching. It was postulated that tri-stable switching occurred at the location where the conductive filament (initially formed by the electroforming step) was ruptured by a subsequent unipolar reset process. The mechanism of the tri-stable memristive switching presented in this article was attributed to the migration of oxygen ions through the ruptured filament region and the resulting modulation of the Schottky-like interfaces. The assertion was further supported by a comparison study performed on a Pt/TiO2/TiO(2-x)/Pt cell.

15.
Nanotechnology ; 22(25): 254010, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21572205

RESUMO

The detailed mechanism of electronic bipolar resistance switching (BRS) in the Pt/TiO(2)/Pt structure was examined. The conduction mechanism analysis showed that the trap-free and trap-mediated space-charge-limited conduction (SCLC) governs the low and high resistance state of BRS, respectively. The SCLC was confirmed by fitting the current-voltage characteristics of low and high resistance states at various temperatures. The BRS behavior originated from the asymmetric potential barrier for electrons escaping from, and trapping into, the trap sites with respect to the bias polarity. This asymmetric potential barrier was formed at the interface between the trap layer and trap-free layer. The detailed parameters such as trap density, and trap layer and trap-free layer thicknesses in the electronic BRS were evaluated. This showed that the degradation in the switching performance could be understood from the decrease and modified distribution of the trap densities in the trap layer.

16.
Nanotechnology ; 21(30): 305203, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20610869

RESUMO

This study examined the effects of electrical forming methods on the bipolar resistance switching (BRS) behavior in Pt/TiO(2)/Pt sandwich structures. The BRS is confined to a region near the ruptured end of conducting nanofilaments, which are composed of a Ti(n)O(2n-1) Magnéli phase formed by electroforming. The intermediate phase with an oxygen vacancy concentration between the insulating TiO(2) and the residual conducting filament that formed at the interface region was considered to be the switching layer (SL). The change in filament shape caused by a variation in the compliance current during filament formation resulted in a different filament rupture location and SL configuration. Precise control of the filament formation and rupture process resulted in SLs connected in an anti-parallel configuration. It was possible to reconfigure the SLs in the same fashion without any restraints, which allowed an unlimited memristive operation to be achieved. This paper presents a new technique in voltage sweep mode that applies a compliance current as a tool to achieve a memristor with unlimited operation.

17.
Nanotechnology ; 21(19): 195201, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20400821

RESUMO

This study examined the properties of Schottky-type diodes composed of Pt/TiO(2)/Ti, where the Pt/TiO(2) and TiO(2)/Ti junctions correspond to the blocking and ohmic contacts, respectively, as the selection device for a resistive switching cross-bar array. An extremely high forward-to-reverse current ratio of approximately 10(9) was achieved at 1 V when the TiO(2) film thickness was 19 nm. TiO(2) film was grown by atomic layer deposition at a substrate temperature of 250 degrees C. Conductive atomic force microscopy revealed that the forward current flew locally, which limits the maximum forward current density to < 10 A cm(-2) for a large electrode (an area of approximately 60 000 microm(2)). However, the local current measurement showed a local forward current density as high as approximately 10(5) A cm(-2). Therefore, it is expected that this type of Schottky diode effectively suppresses the sneak current without adverse interference effects in a nano-scale resistive switching cross-bar array with high block density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...