Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(4): 2992-3001, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227810

RESUMO

Phenyl-C61-butyric acid methyl ester (PCBM) can be used as a passivation material in perovskite solar cells (PeSCs) in order to reduce the trap site of the perovskite. Here, we show that a thick PCBM layer can form a smoother surface on the SnO2 substrate, improving the grain size and reducing the microstrain of the perovskite. High-temperature annealing treatment of PCBM layer not only increases its solvent resistance to perovskite precursor or antisolvent, but also enhances its molecular alignment, resulting in improved conductivity as an electron transport layer. High-temperature annealed PCBM (HT-PCBM) effectively minimizes trap-assisted nonradiative recombination by reducing trap density in perovskite and improving the electrical properties at the interface between SnO2 and perovskite layers. This HT-PCBM process significantly enhances the performance of the PeSCs, including the open-circuit voltage (VOC) from 0.39 to 0.77 V, fill factor from 52% to 65%, and power conversion efficiency (PCE) from 6.03% to 15.50%, representing substantial improvements compared to devices without PCBM. This PCE is the highest efficiency among conventional (n-i-p) Sn-Pb PeSCs reported to date. Moreover, passivating the trap sites of SnO2 and separating the interface between the Sn-containing perovskite and the substrate effectively have improved the stability of the Sn-Pb perovskite in the n-i-p structure. The optimized best device with HT-PCBM has maintained an efficiency of over 90% for more than 300 h at 85 °C and 5000 h at room temperature in a glovebox atmosphere.

2.
Sci Rep ; 11(1): 11679, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083656

RESUMO

Since the South Korean government enacted the Emission Trading Scheme (ETS), companies have been striving to simultaneously improve productivity and reduce carbon emissions, which represent conflicting goals. We used firm-level emissions and corporate variables to investigate how ETS enactment has affected carbon productivity, which is a firm-level revenue created per unit of carbon emission. Results showed that firm-level carbon productivity increased significantly under the ETS, and such a trend was more evident for high-emission industries. We also found that companies with high carbon productivity were (1) profitable, (2) innovative, and (3) managed by CEOs with experience in environmental fields. These findings suggest that to achieve the conflicting goals of increasing corporate profits while reducing emissions, firms have to invest in green technologies, and such decisions are supported by green leadership. Our findings also have implications for corporate leadership; data highlight the importance of managing human resources and deploying investment policies to respond to ETS.

3.
Macromol Rapid Commun ; 39(14): e1800108, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29688600

RESUMO

Naphthalene diimide (NDI) dimers, NDI-Ph-NDI with a phenyl linker and NDI-Xy-NDI with a xylene linker, are designed and synthesized. The influence of the xylene and phenyl linkers on optical properties, electrochemical properties, morphology, and device performance is systematically investigated. Non-fullerene organic solar cells (OSCs) with NDI-Ph-NDI show poor device efficiency due to aggregation of polymer chains and/or NDI dimers caused by the highly planar structure of NDI-Ph-NDI. Although NDI-Xy-NDI is a non-planar structure, uniform surface morphology and weak bimolecular recombination lead to high power conversion efficiencies of 3.11%, which is the highest value in non-fullerene OSCs with NDI small molecules.


Assuntos
Imidas/química , Naftalenos/química , Polímeros/química , Semicondutores , Energia Solar , Elétrons , Fulerenos/química , Perileno/química , Difração de Raios X
4.
RSC Adv ; 8(43): 24110-24115, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35539189

RESUMO

We herein demonstrate n-i-p-type planar heterojunction perovskite solar cells employing spin-coated ZnO nanoparticles modified with various alkali metal carbonates including Li2CO3, Na2CO3, K2CO3 and Cs2CO3, which can tune the energy band structure of ZnO ETLs. Since these metal carbonates doped on ZnO ETLs lead to deeper conduction bands in the ZnO ETLs, electrons are easily transported from the perovskite active layer to the cathode electrode. The power conversion efficiency of about 27% is improved due to the incorporation of alkali carbonates in ETLs. As alternatives to TiO2 and n-type metal oxides, electron transport materials consisting of doped ZnO nanoparticles are viable ETLs for efficient n-i-p planar heterojunction solar cells, and they can be used on flexible substrates via roll-to-roll processing.

5.
RSC Adv ; 8(69): 39777-39783, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-35558017

RESUMO

The ability to control the morphologies of active layers is a critical factor in the successful development of polymer solar cells (PSCs), and solvent processing additives offer a simple and effective way to accomplish this. In particular, diphenyl ether (DPE) is one of the most effective solvent additives but analogous additives based on this structure have not yet been extensively investigated. In this work, we have fabricated PSCs and investigated photovoltaic device characteristics using the series of non-halogenated, diphenyl-chalcogen solvent additives; DPE, diphenyl sulfide (DPS) and diphenyl selenide (DPSe). DPS devices showed optimal power conversion efficiencies (PCEs) of up to 9.08%, and DPE devices also showed similarly high PCEs of up to 8.85%. In contrast, DPSe devices showed relatively low PCEs (5.45% at best) which we attribute to significant surface recombination and high series resistance, which led to limited open-circuit voltage (V OC). In the case of DPS, fast, field-independent photocurrent saturation with negligible bimolecular recombination led to efficient charge separation and collection, which resulted in the highest PCEs. Additionally, using 1,2,4-trimethylbenzene and DPS as an entirely non-halogenated solvent/additive system, we successfully demonstrated device fabrication with comparably high PCEs of up to 8.4%. This work elucidates the effects of diphenyl-based solvent additives in PSCs and suggests a great potential of DPS as an effective non-halogenated solvent additive.

6.
Nat Commun ; 6: 7348, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26081865

RESUMO

Organic-inorganic hybrid perovskite materials offer the potential for realization of low-cost and flexible next-generation solar cells fabricated by low-temperature solution processing. Although efficiencies of perovskite solar cells have dramatically improved up to 19% within the past 5 years, there is still considerable room for further improvement in device efficiency and stability through development of novel materials and device architectures. Here we demonstrate that inverted-type perovskite solar cells with pH-neutral and low-temperature solution-processable conjugated polyelectrolyte as the hole transport layer (instead of acidic PEDOT: PSS) exhibit a device efficiency of over 12% and improved device stability in air. As an alternative to PEDOT: PSS, this work is the first report on the use of an organic hole transport material that enables the formation of uniform perovskite films with complete surface coverage and the demonstration of efficient, stable perovskite/fullerene planar heterojunction solar cells.

7.
Chemphyschem ; 16(6): 1305-14, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25334043

RESUMO

To be meaningful to guide the rational design of novel high-performance conjugated semiconductors, we prepared three benzo[1,2-b:4,5-b']dithiophene (BDT)-based polymers by systematically moving the branching point of the alkyl chain. The effect of side-chain engineering was thoroughly investigated by a range of techniques. We demonstrate that a subtle change in the branching position in the BDT core can have a critical impact on polymer packing and preferential backbone orientation in thin films; copolymers made from BDT and thieno[3,4-c]pyrrole-4,6-dione units (TPD) adopt more of a face-on orientation as the branching point is shifted closer to the backbone, which can be correlated with a dramatic difference in solar-cells performance. The high short-circuit current density (11.6 mA cm(-2) ) for the copolymer with one carbon atom between the alkoxylated oxygen atom and the branching point results from its predominantly face-on orientation and smoother surface in thin films, which results in power conversion efficiencies as high as 4.56 %.

8.
Phys Chem Chem Phys ; 17(3): 2152-9, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25483363

RESUMO

Although polymer solar cells (PSCs) have received a tremendous amount of attention in recent years, a number of criteria must be met in order for them to be suitable as practical and commercially feasible power sources, including high performance, good air stability and inexpensive manufacturing. In this contribution, we determine the optimal top electrode for practical PSC fabrication by investigating the influence of the electrode material on the optical properties and performance of PSC devices. The optical properties of eight metals were considered, out of which three metal electrodes (aluminum (Al), silver (Ag), gold (Au)) with the best optical properties were used to prepare inverted PSC devices comprising a blended polymer thieno[3,4-b]thiophene/benzodithiophene (PTB7) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM). Among the photovoltaic parameters, the short circuit current density (JSC) was most strongly affected by the optical properties of the top electrode. In the results of the experiment, the J(SC) of the Al and Ag electrode devices was found to be approximately 13% (13.4 → 15.1 mA cm(-2)) higher than the Au electrode device due to the significant parasitic absorption of light by Au at wavelengths below 600 nm. In contrast, Al and Ag electrodes have high reflectance throughout the visible spectrum, which leads to high J(SC). Ag electrodes have relatively good stability to ambient exposure, maintaining over 96% of the original efficiency after 170 hours; this stability is comparable to Au. These data lead to the conclusion that Ag is the optimal top electrode material for use in inverted devices.

9.
Nanoscale ; 6(12): 6679-83, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24817432

RESUMO

We investigate mixed solvents of N,N-dimethylformamide (DMF) and γ-butyrolactone (GBL) to produce the smooth surface of a perovskite film and uniform crystal domains. This ideal morphology from mixed solvents enhances the power conversion efficiency to over 6% by improving the exciton dissociation efficiency and reducing the recombination loss at both interfaces of PEDOT:PSS/perovskite and perovskite/PCBM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...