Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 288, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879630

RESUMO

As the mean age of first-time mothers increases in the industrialized world, inquiries into causes of human reproductive senescence have followed. Rates of ovulatory dysfunction and oocyte aneuploidy parallel chronological age, but poor reproductive outcomes in women older than 35 years are also attributed to endometrial senescence. The current studies, using primary human endometrial stromal cell (ESC) cultures as an in vitro model for endometrial aging, characterize the proinflammatory cytokine, IL-1ß-mediated and passage number-dependent effects on ESC phenotype. ESC senescence was accelerated by incubation with IL-1ß, which was monitored by RNA sequencing, ELISA, immunocytochemistry and Western blotting. Senescence associated secreted phenotype (SASP) proteins, IL-1ß, IL-6, IL-8, TNF-α, MMP3, CCL2, CCL5, and other senescence-associated biomarkers of DNA damage (p16, p21, HMGB1, phospho-γ-histone 2 A.X) were noted to increase directly in response to 0.1 nM IL-1ß stimulation. Production of the corresponding SASP proteins increased further following extended cell passage. Using enzyme inhibitors and siRNA interference, these effects of IL-1ß were found to be mediated via the c-Jun N-terminal kinase (JNK) signaling pathway. Hormone-induced ESC decidualization, classical morphological and biochemical endocrine responses to estradiol, progesterone and cAMP stimulation (prolactin, IGFBP-1, IL-11 and VEGF), were attenuated pari passu with prolonged ESC passaging. The kinetics of differentiation responses varied in a biomarker-specific manner, with IGFBP-1 and VEGF secretion showing the largest and smallest reductions, with respect to cell passage number. ESC hormone responsiveness was most robust when limited to the first six cell passages. Hence, investigation of ESC cultures as a decidualization model should respect this limitation of cell aging. The results support the hypotheses that "inflammaging" contributes to endometrial senescence, disruption of decidualization and impairment of fecundity. IL-1ß and the JNK signaling pathway are pathogenetic targets amenable to pharmacological correction or mitigation with the potential to reduce endometrial stromal senescence and enhance uterine receptivity.

2.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674446

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a vertically transmitted reproductive disorder that is typically characterized by miscarriage, premature birth, and stillbirth in pregnant sows after infection. Such characteristics indicate that PRRSV can infect and penetrate the porcine placental barrier to infect fetus piglets. The porcine trophoblast is an important component of the placental barrier, and secretes various hormones, including estrogen and progesterone, to maintain normal pregnancy and embryonic development during pregnancy. It is conceivable that the pathogenic effects of PRRSV infection on porcine trophoblast cells may lead to reproductive failure; however, the underlying detailed mechanism of the interaction between porcine trophoblast (PTR2) cells and PRRSV is unknown. Therefore, we conducted genome-wide mRNA and long non-coding RNA (lncRNA) analysis profiling in PRRSV-infected PTR2. The results showed that 672 mRNAs and 476 lncRNAs were significantly different from the control group after viral infection. Target genes of the co-expression and co-location of differential mRNAs and lncRNAs were enriched by GO (gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, revealing that most of the pathways were involved in cell nutrient metabolism, cell proliferation, and differentiation. Specifically, the estrogen signaling pathway, the PI3K (PhosphoInositide-3 Kinase)-Akt (serine/threonine kinase) signaling pathway, and the insulin secretion related to embryonic development were selected for analysis. Further research found that PRRSV inhibits the expression of G-protein-coupled estrogen receptor 1 (GPER1), thereby reducing estrogen-induced phosphorylation of AKT and the mammalian target of rapamycin (mTOR). The reduction in the phosphorylation of AKT and mTOR blocks the activation of the GPER1- PI3K-AKT-mTOR signaling pathway, consequently restraining insulin secretion, impacting PTR2 cell proliferation, differentiation, and nutrient metabolism. We also found that PRRSV triggered trophoblast cell apoptosis, interrupting the integrity of the placental villus barrier. Furthermore, the interaction network diagram of lncRNA, regulating GPER1 and apoptosis-related genes, was constructed, providing a reference for enriching the functions of these lncRNA in the future. In summary, this article elucidated the differential expression of mRNA and lncRNA in trophoblast cells infected with PRRSV. This infection could inhibit the PI3K-AKT-mTOR pathway and trigger apoptosis, providing insight into the mechanism of the vertical transmission of PRRSV and the manifestation of reproductive failure.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , RNA Longo não Codificante , Suínos , Animais , Feminino , Gravidez , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , RNA Longo não Codificante/genética , Trofoblastos , RNA Mensageiro/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Placenta , Síndrome Respiratória e Reprodutiva Suína/genética , Serina-Treonina Quinases TOR , Estrogênios , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...