Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(13): 9413-9421, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506128

RESUMO

Precise control of cellular signaling events during programmed cell death is crucial yet challenging for cancer therapy. The modulation of signal transduction in cancer cells holds promise but is limited by the lack of efficient, biocompatible, and spatiotemporally controllable approaches. Here we report a photodynamic strategy that modulates both apoptotic and pyroptotic cell death by altering caspase-3 protein activity and the associated signaling crosstalk. This strategy employs a mitochondria-targeting, near-infrared activatable probe (termed M-TOP) that functions via a type-I photochemical mechanism. M-TOP is less dependent on oxygen and more effective in treating drug-resistant cancer cells, even under hypoxic conditions. Our study shows that higher doses of M-TOP induce pyroptotic cell death via the caspase-3/gasdermin-E pathway, whereas lower doses lead to apoptosis. This photodynamic method is effective across diverse gasdermin-E-expressing cancer cells. Moreover, the M-TOP mediated shift from apoptotic to pyroptotic modulation can evoke a controlled inflammatory response, leading to a robust yet balanced immune reaction. This effectively inhibits both distal tumor growth and postsurgical tumor recurrence. This work demonstrates the feasibility of modulating intracellular signaling through the rational design of photodynamic anticancer drugs.


Assuntos
Gasderminas , Neoplasias , Humanos , Caspase 3/metabolismo , Apoptose , Transdução de Sinais , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Caspase 8/metabolismo , Caspase 8/farmacologia , Caspase 1/metabolismo , Caspase 1/farmacologia
2.
PLoS Negl Trop Dis ; 17(8): e0011507, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37639406

RESUMO

Naja atra bite is one of the most common severe snakebites in emergency departments. Unfortunately, the pathophysiological changes caused by Naja atra bite are unclear due to the lack of good animal models. In this study, an animal model of Naja atra bite in Guangxi Bama miniature pigs was established by intramuscular injection at 2 mg/kg of Naja atra venom, and serum metabolites were systematically analyzed using untargeted metabolomic and targeted metabolomic approaches. Untargeted metabolomic analysis revealed that 5045 chromatographic peaks were obtained in ESI+ and 3871 chromatographic peaks were obtained in ESI-. Screening in ESI+ modes and ESI- modes identified 22 and 36 differential metabolites compared to controls. The presence of 8 core metabolites of glutamine, arginine, proline, leucine, phenylalanine, inosine, thymidine and hippuric acid in the process of Naja atra bite was verified by targeted metabolomics significant difference (P<0.05). At the same time, during the verification process of the serum clinical samples with Naja atra bite, we found that the contents of three metabolites of proline, phenylalanine and inosine in the serum of the patients were significantly different from those of the normal human serum (P<0.05). By conducting functional analysis of core and metabolic pathway analysis, we revealed a potential correlation between changes in key metabolites after the Naja atra bite and the resulting pathophysiological alterations, and our research aims to establish a theoretical foundation for the prompt diagnosis and treatment of Naja atra bite.


Assuntos
Naja naja , Mordeduras de Serpentes , Humanos , Animais , Suínos , China , Metabolômica , Venenos Elapídicos , Inosina
3.
Artigo em Inglês | MEDLINE | ID: mdl-37441002

RESUMO

Background: Bungarus multicinctus is one of the most dangerous venomous snakes prone to cardiopulmonary damage with extremely high mortality. In our previous work, we found that glutamine (Gln) and glutamine synthetase (GS) in pig serum were significantly reduced after Bungarus multicinctus bite. In the present study, to explore whether there is a link between the pathogenesis of cardiopulmonary injury and Gln metabolic changes induced by Bungarus multicinctus venom. We investigated the effect of Gln supplementation on the lung and heart function after snakebite. Methods: We supplemented different concentrations of Gln to mice that were envenomated by Bungarus multicinctus to observe the biological behavior, survival rate, hematological and pathological changes. Gln was supplemented immediately or one hour after the venom injection, and then changes in Gln metabolism were analyzed. Subsequently, to further explore the protective mechanism of glutamine on tissue damage, we measured the expression of heat-shock protein70 (HSP70), NF-κB P65, P53/PUMA by western blotting and real-time polymerase in the lung and heart. Results: Gln supplementation delayed the envenoming symptoms, reduced mortality, and alleviated the histopathological changes in the heart and lung of mice bitten by Bungarus multicinctus. Additionally, Gln increased the activity of glutamine synthetase (GS), glutamate dehydrogenase (GDH) and glutaminase (GLS) in serum. It also balanced the transporter SLC7A11 expression in heart and lung tissues. Bungarus multicinctus venom induced the NF-κB nuclear translocation in the lung, while the HO-1 expression was suppressed. At the same time, venom activated the P53/PUMA signaling pathway and the BAX expression in the heart. Gln treatment reversed the above phenomenon and increased HSP70 expression. Conclusion: Gln alleviated the glutamine metabolism disorder and cardiopulmonary damage caused by Bungarus multicinctus venom. It may protect lungs and heart against venom by promoting the expression of HSP70, inhibiting the activation of NF-κB and P53/PUMA, thereby delaying the process of snake venom and reducing mortality. The present results indicate that Gln could be a potential treatment for Bungarus multicinctus bite.

4.
Front Chem ; 10: 874641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494633

RESUMO

Endogenic heat shock proteins and uneven local heat distribution are two main problems in traditional tumor hyperthermia therapy strategies. Aiming at solving these problems, we designed Au-SnSe-PVP nanomaterials (ASNPs) by modifying Au nanoparticles (Au-NPs) and biocompatible PVP on SnSe nanorods via a new reactive oxygen species production strategy. The ASNPs with excellent photothermal conversion performance can produce thermoelectric effects in response to temperature differences during photothermal conversion. The modification of Au-NPs can attract free electron (e-) to accumulate and promote the separation of e- and holes (h+) in the thermoelectric process, thereby further promoting e--rich Au-NPs-induced H2O2 homolysis and h+-H2O half-reaction to generate hydroxyl radicals, realizing the synergistic application of photothermal therapy and pyroelectric dynamic therapy in tumor treatment.

5.
Front Chem ; 10: 854516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265588

RESUMO

Au metal nanoparticles as artificial nanozymes have attracted wide interest in biotechnology due to high stability and easy synthesis. Unfortunately, its catalytic activity is limited by the uniform surface electron distribution, fundamentally affecting the oxidation efficiency of glucose. Here, we synthesized AuPt bimetallic nanoparticles with unique surface electron structure due to the coupling effect of the two metal components, achieving improved glucose catalytic oxidase. Because of the effective work function difference between the two metals in AuPt, the electrons will transfer from Au to accumulate on Pt, simultaneously contributing to the substantial enhancement of Au-induced glucose oxidase and Pt-induced catalase performance. We systematically studied the enzyme-catalytic efficiency of AuPt with varied two metal proportions, in which Au:Pt at 3:1 showed the highest catalytic efficiency of glucose oxidase in solution. The AuPt nanoparticles were further co-cultured with cells and also showed excellent biological activity for glucose oxidase. This work demonstrates that the physicochemical properties between different metals can be exploited for engineering high-performance metal nanoparticle-based nanozymes, which opens up a new way to rationally design and optimize artificial nanozymes to mimic natural enzymes.

6.
Toxicol Lett ; 350: 225-239, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34343594

RESUMO

Bungarus multicinctus is one of the top ten venomous snakes in China, and its bite causes acute and severe diseases, but its pathophysiology remains poorly elucidated. Thus, an animal model of Bungarus multicinctus bite was established by intramuscular injection of 30µg/kg of Bungarus multicinctus venom, and then the serum metabolites were subsequently screened, identified and validated by ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS) methods to explore the potential biomakers and possible metabolic pathways. Untargeted metabolomics analysis showed that 36 and 38 endogenous metabolites levels changed in ESI+ and ESI-, respectively, KEGG pathway analysis showed that 5 metabolic pathways, including mineral absorption, central carbon metabolism in cancer, protein digestion and absorption, aminoacyl-tRNA biosynthesis and ABC transporters might be closely related to Bungarus multicinctus bite. Targeted metabolomics analysis showed that there were significant differences in serum D-proline, L-leucine and L-glutamine after Bungarus multicinctus bite (P < 0.05). In addition, receiver operating characteristic (ROC) analysis showed that the diagnostic efficiency of L-Glutamine was superior to other potential biomarkers and the AUC value was 0.944. Moreover, we found evidence for differences in the pathophysiology of glutamine between Bungarus multicinctus bite group and normal group, specifically with the content of glutamine synthetase (GS) and glutaminase (GLS). Taken together, the current study has successfully established an animal model of Bungarus multicinctus bite, and further identified the links between the metabolic perturbations and the pathophysiology and the potential diagnostic biomakers of Bungarus multicinctus bite, which provided valuable insights for studying the mechanism of Bungarus multicinctus bite.


Assuntos
Bungarus , Venenos Elapídicos/sangue , Venenos Elapídicos/metabolismo , Venenos Elapídicos/toxicidade , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica , Porco Miniatura/sangue , Animais , China , Feminino , Masculino , Camundongos , Modelos Animais , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...