Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 358: 142157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679181

RESUMO

Microbial electrosynthesis (MES) is an electrically driven technology that can be used for converting CO/CO2 into chemicals. The unique electronic and substrate properties of CO make it an important research target for MES. However, CO can poison the cathode and increase the overpotential of hydrogen evolution reaction (HER), thus reducing the electron transfer rate via H2. This work evaluated the effect of an anti-CO HER catalyst on the performance of MES for CO/CO2 conversion. ZnMo-metal-organic framework (MOF) materials with different calcination temperatures were synthesized. ZnMo-MOF-800 with Mo2C nanoparticles as active centers exhibited excellent resistance to CO toxicity. It also obtained the highest hydrogen evolution and enhanced electron transfer rate in CO atmosphere. MES with ZnMo-MOF-800 cathode and Clostridium ljungdahlii as biocatalyst obtained 0.31 g L-1 d-1 acetate yield, 0.1 g L-1 d-1 butyrate yield, and 0.09 g L-1 d-1 2,3-butanediol yield in CO/CO2, while Pt/C only get 0.076 g L-1 d-1 acetate yield, 0.05 g L-1 d-1 butyrate yield and 0.02 g L-1 d-1 2,3-butanediol yield. ZnMo-MOF-800 was conducive to biofilm formation, enabling it to better resist CO toxicity. This work provides new opportunities for constructing a highly efficient cathode with an anti-CO hydrogen evolution catalyst to enhance CO/CO2 conversion in MES.


Assuntos
Dióxido de Carbono , Monóxido de Carbono , Hidrogênio , Estruturas Metalorgânicas , Hidrogênio/metabolismo , Hidrogênio/química , Dióxido de Carbono/química , Catálise , Estruturas Metalorgânicas/química , Eletrodos , Clostridium/metabolismo , Técnicas Eletroquímicas , Molibdênio/química , Zinco/química
2.
Mikrochim Acta ; 191(3): 127, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334844

RESUMO

A one-target-many-trigger signal model sensing strategy is proposed for quickly, sensitive and on-site detection of the environmental pollutant p-aminophenol (PAP) by use of a commercial personal glucose meter (PGM) for signal readout with the core-shell "loading-type" nanomaterial MSNs@MnO2 as amplifiable nanoprobes. In this design, the mesoporous silica nanoparticles (MSNs) nanocontainer with entrapped signal molecule glucose is coated with redoxable manganese dioxide (MnO2) nanosheets to form the amplifiable nanoprobes (Glu-MSNs@MnO2). When encountered with PAP, the redox reaction between the MnO2 and PAP can induce the degradation of the outer layer of MSNs@MnO2, liberating multiple copies of the loaded glucose to light up the PGM signal. Owing to the high loading capability of nanocarriers, a "one-to-many" relationship exists between the target and the signal molecule glucose, which can generate adequate signal outputs to achieve the requirement of on-site determination of environmental pollutants. Taking advantage of this amplification mode, the developed PAP assay owns a dynamic linear range of 10.0-400 µM with a detection limit of 2.78 µM and provides good practical application performance with above 96.7 ± 4.83% recovery in environmental water and soil samples. Therefore, the PGM-based amplifiable sensor for PAP proposed can accommodate these requirements of environment monitoring and has promising potential for evaluating pollutants in real environmental samples.


Assuntos
Aminofenóis , Nanoestruturas , Óxidos , Compostos de Manganês , Glucose , Dióxido de Silício
3.
Biotechnol Lett ; 44(12): 1495-1505, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36269494

RESUMO

Simple, effective and environment-friendly ways for remediating toxic metal pollution are necessary. In this study, the effect of different concentrations phosphate buffer solution (PBS) on removal efficiency of Pb and Zn in soil by solid phase microbial fuel cell (SMFC) was investigated. During 100 days of operation, the SMFC with 150 mM PBS generated the highest power density of 21.7 mW m-2 and the lowest internal resistance of 161 Ω. The addition of PBS can also increase soil conductivity and maintain a suitable pH for microbial activity. Furthermore, the removal rate of Pb and Zn in the SMFC with 150 mM PBS can reach 14.7% and 22.3%, respectively. The microbial community analyses demonstrated that Anditalea as an exoelectrogen in alkaline-saline conditions was significantly enriched in the SMFC with 150 mM PBS. This study provides an effective strategy for strengthening SMFC to remove toxic metals in soil.


Assuntos
Fontes de Energia Bioelétrica , Metais Pesados , Poluentes do Solo , Solo , Indicadores e Reagentes/análise , Zinco , Fosfatos/análise
4.
Bioprocess Biosyst Eng ; 45(7): 1137-1147, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35624323

RESUMO

Solid-phase microbial fuel cell (SMFC) can accelerate the removal of organic pollutants through the electrons transfer between microorganisms and anodes in the process of generating electricity. Thus, the characteristics of the anode material will affect the performance of SMFCs. In this study, corn stem (CS) is first calcined into a 3D macroporous electrode, and then modified with carbon nanotubes (CNTs) through electrochemical deposition method. Scanning electron microscope analysis showed the CS/CNT anode could increase the contact area on the surface. Furthermore, electrochemical impedance spectroscopy and cyclic voltammetry analysis indicated the electrochemical double-layer capacitance of the CS/CNT anode increased while its internal resistance decreased significantly. These characteristics are crucial for increasing bacterial adhesion capability and electron transfer rate. The maximum output voltage of the SMFC with CS/CNT anode was 158.42 mV, and the removal rate of petroleum hydrocarbon (PH) reached 42.17%, 2.72 times that of unmodified CS. In conclusion, CNT-modified CS is conducive to improve electron transfer rate and microbial attachment, enhancing the removal efficiency of PH in soil.


Assuntos
Fontes de Energia Bioelétrica , Nanotubos de Carbono , Petróleo , Fontes de Energia Bioelétrica/microbiologia , Eletrodos , Hidrocarbonetos , Nanotubos de Carbono/química , Solo , Zea mays
5.
Sci Total Environ ; 818: 151820, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34813808

RESUMO

Microbial electrosynthesis (MES) is a novel CO2 utilization technology. Biocatalysts in this process may use electrons obtained from a photovoltaic system to reduce CO2 to chemicals and realize energy conversion from solar energy to chemical energy. The photoelectric material CuO/g-C3N4 was directly introduced into the MES system using mixed culture as biocatalyst in this study. CuO/g-C3N4 can effectively absorb light and presents satisfactory electron and hole separation ability. Photogenerated electrons from CuO/g-C3N4 enhanced the electron transfer rate and reduced cathodic charge transfer resistance. CuO/g-C3N4 mainly improved the electron supply of electroautotrophic microorganisms through direct electron transfer rather than indirect electron transfer via hydrogen. Photogenerated holes can combine electrons from anode and provide extra driving force to improve the MES performance. Furthermore, the CuO/g-C3N4 photocathode also improved the biocatalytic activity by increasing the total amount of biocatalyst and regulating cathodic microbial community composition. Acetate production rate in MES with the CuO/g-C3N4 photocathode was 2.6 times higher than that of the control group. This study provides a new strategy for semiconductor photocathodes to improve the MES performance with mixed culture.


Assuntos
Dióxido de Carbono , Cobre , Acetatos , Dióxido de Carbono/química , Eletrodos
6.
ACS Appl Mater Interfaces ; 12(27): 30449-30456, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32558536

RESUMO

Microbial electrosynthesis (MES) is an electricity-driven technology for the microbial reduction of CO2 to organic commodities. However, the limited solubility of CO2 in a solution and the inefficient electron transfer make it impossible for microorganisms to obtain an efficient surface for catalytic interaction, thus resulting in the low efficiency of MES. To address this, we introduce a multifunctional perovskite-based cathode material Pr0.5(Ba0.5Sr0.5)0.5Co0.8Fe0.2O3-δ-carbon felt (Pr0.5BSCF-CF), which provides a simultaneously significant increase in CO2 absorption and hydrogen production. As a result, the volumetric acetate production rate of MES obtained by Pr0.5BSCF-CF is 0.24 ± 0.01 g L-1 day-1, and it achieves a maximum acetate titer of 13.74 ± 0.20 g L-1 within 70 days. An adequate supply of CO2 and H2 also provides a sufficient amount of substrates and energy for the self-replication of the biocatalysts in the MES reactor. This effect not only increases the amount of biocatalysts but also optimizes the functions of the biocatalysts; the above benefits further improve the production efficiency of the MES system. This strategy demonstrates that the development of perovskite-based multifunctional cathodes with a simultaneous supplementation of substrates and electrons is a promising approach toward improving the MES efficiency.


Assuntos
Compostos de Cálcio/química , Óxidos/química , Titânio/química , Dióxido de Carbono/química , Catálise , Técnicas Eletroquímicas/métodos , Eletrodos
7.
Bioprocess Biosyst Eng ; 43(3): 383, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31820097

RESUMO

It has been brought to our attention that in our article, explanations about cable bacteria are not rigorous. We apologize for these and note the specific reporting issues and errors below, with their corrections.

8.
Bioprocess Biosyst Eng ; 43(3): 373-381, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31659438

RESUMO

In this paper, a graphene/Fe2O3 (G/Fe2O3) modified anode was prepared through a simple one-step hydrothermal reduction method to improve the performance of microbial fuel cell (MFC). The power density of MFC with the G/Fe2O3 anode was 334 ± 4 mW/m2, which was 1.72 times and 2.59 times that of MFC with a graphene anode and an unmodified anode, respectively. Scanning electron microscopy and iron reduction rate experiment showed that G/Fe2O3 materials had good biocompatibility. Furthermore, microbial community analysis results indicated that the predominant populations on the anode biofilm belonged to Enterobacteriaceae, and the abundance of Desulfovibrio increased in the presence of the Fe2O3. Thus, the combination of graphene and Fe2O3 provided high electrical conductivity to facilitate extracellular electron transfer (EET) and improved biocompatibility to promote the exoelectrogenic bacteria formation. Therefore, G/Fe2O3 is an effective anode material for enhancing the performance of MFCs.


Assuntos
Fontes de Energia Bioelétrica , Carbono/química , Eletrodos , Compostos Férricos/química , Grafite/química , Biofilmes , Cristalografia por Raios X , Desulfovibrio/metabolismo , Enterobacteriaceae/metabolismo , Ferro/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
9.
Biotechnol Biofuels ; 12: 71, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30976321

RESUMO

BACKGROUND: Microbial electrosynthesis (MES) is a biocathode-driven process, in which electroautotrophic microorganisms can directly uptake electrons or indirectly via H2 from the cathode as energy sources and CO2 as only carbon source to produce chemicals. RESULTS: This study demonstrates that a hydrogen evolution reaction (HER) catalyst can enhance MES performance. An active HER electrocatalyst molybdenum carbide (Mo2C)-modified electrode was constructed for MES. The volumetric acetate production rate of MES with 12 mg cm-2 Mo2C was 0.19 ± 0.02 g L-1 day-1, which was 2.1 times higher than that of the control. The final acetate concentration reached 5.72 ± 0.6 g L-1 within 30 days, and coulombic efficiencies of 64 ± 0.7% were yielded. Furthermore, electrochemical study, scanning electron microscopy, and microbial community analyses suggested that Mo2C can accelerate the release of hydrogen, promote the formation of biofilms and regulate the mixed microbial flora. CONCLUSION: Coupling a HER catalyst to a cathode of MES system is a promising strategy for improving MES efficiency.

10.
RSC Adv ; 9(59): 34095-34101, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-35529973

RESUMO

Microbial electrosynthesis (MES) allows the transformation of CO2 into value-added products by coupling with renewable energy. The enhancement in the microbial activity and electron transfer rate via a new electrode modification method is essential for developing MES. Here, three groups of granular activated carbon decorated by Fe3O4 (Fe3O4/GAC) with mass fractions of 23%, 38% and 50% were prepared and compared with bare GAC. The volumetric acetate production rate of MES with Fe3O4/GAC-38% was the highest (0.171 g L-1 d-1), which was 1.4 times higher that of the control (bare GAC), and the final acetate concentration reached 5.14 g L-1 within 30 days. Linear sweep voltammetry and microbial community analyses suggested that Fe3O4/GAC facilitates extracellular electron transfer and improves the enrichment of electrochemically active bacteria. Fe3O4/GAC is an effective three-dimensional electrode material that enhances biofilm activity on GAC and improves MES efficiency.

11.
Bioresour Technol ; 269: 203-209, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30173066

RESUMO

The electricity-driven bioreduction of carbon dioxide to multi-carbon organic compounds, particularly acetate, has been achieved in microbial electrosynthesis (MES). MES performance can be limited by the amount of cathode surface area available for biofilm formation and slow substrate mass transfer. Here, a fluidized three-dimensional electrode, containing granular activated carbon (GAC) particles, was constructed via MES. The volumetric acetate production rate increased by 2.8 times through MES with 16 g L-1 GAC (0.14 g L-1 d-1) compared with that of the control (no GAC), and the final acetate concentration reached 3.92 g L-1 within 24 days. Electrochemical, scanning electron microscopy, and microbial community analyses suggested that GAC might improve the performance of MES by accelerating direct and indirect (via H2) electron transfer because GAC could provide a high electrode surface and a favorable mass transport. This study attempted to improve the efficiency of MES and presented promising opportunities for MES scale-up.


Assuntos
Dióxido de Carbono , Eletrodos , Ácido Acético , Reatores Biológicos , Carbono , Carvão Vegetal
12.
J Nanosci Nanotechnol ; 18(8): 5770-5776, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29458638

RESUMO

In this paper, we developed an environmental friendly, cost effective, simple and green approach to reduce graphene oxide (GO) by a sulfate-reducing bacterium Desulfovibrio desulfuricans. The D. desulfuricans reduces exfoliated GO to reduced graphene oxide (rGO) at 25 °C in an aqueous solution without any toxic and environmentally harmful reducing agents. The rGO was characterized with X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscope, X-ray Photoelectron Spectroscopy and Raman Spectroscopy. The analysis results showed that rGO had excellent properties and multi-layer graphene sheets structure. Furthermore, we demonstrated that D. desulfuricans, one of the primary bacteria responsible for the biocorrosion of various metals, might reduce GO to rGO on the surface of copper and prevented the corrosion of copper, which confirmed that electrophoretic deposition of GO on the surface of metals had great potential on the anti-biocorrosion applications.

13.
RSC Adv ; 8(50): 28613-28624, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35542450

RESUMO

The wide presence of antibiotics in the environment has raised concerns about their potential impact on ecological and human health. This study was conducted to evaluate the degradation of antibiotics (chlortetracycline (CTC) and oxytetracycline (OTC)) in microbial fuel cells (MFCs) and the change of toxicity. The degradation rates of 60 mg L-1 CTC and OTC in the MFCs were 74.2% and 78%, respectively, within 7 days. The degradation ability of the two antibiotics followed the order of OTC > CTC. Toxicity test results of the zebrafish illustrated the toxicity of OTC and CTC was largely eliminated by MFC treatment. Furthermore, possible degradation pathways of CTC and OTC were speculated using LC-MS analysis. High-throughput sequencing analysis indicated that Petrimonas, Azospirillum, Dokdonella, Burkholderia and Stenotrophomonas were the predominant genera in the MFC anode biofilm. Therefore, this work is of great significance for future studies on the treatment of antibiotics in wastewater by MFCs.

14.
R Soc Open Sci ; 4(10): 170798, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29134084

RESUMO

For Cr(VI)-removal microbial fuel cell (MFC), a more efficient biocathode in MFCs is required to improve the Cr(VI) removal and electricity generation. RVC-CNT electrode was prepared through the electrophoretic deposition of carbon nanotube (CNT) on reticulated vitreous carbon (RVC). The power density of MFC with an RVC-CNT electrode increased to 132.1 ± 2.8 mW m-2, and 80.9% removal of Cr(VI) was achieved within 48 h; compared to only 44.5% removal of Cr(VI) in unmodified RVC. Cyclic voltammetry, energy-dispersive spectrometry and X-ray photoelectron spectrometry showed that the RVC-CNT electrode enhanced the electrical conductivity and the electron transfer rate; and provided more reaction sites for Cr(VI) reduction. This approach provides process simplicity and a thickness control method for fabricating three-dimensional biocathodes to improve the performance of MFCs for Cr(VI) removal.

15.
Bioresour Technol ; 243: 573-582, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28704738

RESUMO

Microbial electrosynthesis (MES) is a biocathode-driven process, producing high-value chemicals from CO2. Here, an in situ self-assembled graphene oxide (rGO)/biofilm was constructed, in MES, for high efficient acetate production. GO has been successfully reduced by electroautotrophic bacteria for the first time. An increase, of 1.5 times, in the volumetric acetate production rate, was obtained by self-assembling rGO/biofilm, as compared to the control group. In MES with rGO/biofilm, a volumetric acetate production rate of 0.17gl-1d-1 has been achieved, 77% of the electrons consumed, were recovered and the final acetate concentration reached 7.1gl-1, within 40days. A three-dimensional rGO/biofilm was constructed enabling highly efficient electron transfer rates within biofilms, and between biofilm and electrode, demonstrating that the development of 3D electroactive biofilms, with higher extracellular electron transfer rates, is an effective approach to improving MES efficiency.


Assuntos
Biofilmes , Acetatos , Dióxido de Carbono , Eletrodos , Óxidos
17.
J Hazard Mater ; 317: 73-80, 2016 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-27262274

RESUMO

In this study, a simple method of biocathode fabrication in a Cr(VI)-reducing microbial fuel cell (MFC) is demonstrated. A self-assembling graphene was decorated onto the biocathode microbially, constructing a graphene/biofilm, in situ. The maximum power density of the MFC with a graphene biocathode is 5.7 times that of the MFC with a graphite felt biocathode. Cr(VI) reduction was also enhanced, resulting in 100% removal of Cr(VI) within 48h, at 40mg/L Cr(VI), compared with only 58.3% removal of Cr(VI) in the MFC with a graphite felt biocathode. Cyclic voltammogram analyses showed that the graphene biocathode had faster electron transfer kinetics than the graphite felt version. Energy dispersive spectrometer (EDS) and X-ray photoelectron spectra (XPS) analysis revealed a possible adsorption-reduction mechanism for Cr(VI) reduction via the graphene biocathode. This study attempts to improve the efficiency of the biocathode in the Cr(VI)-reducing MFC, and provides a useful candidate method for the treatment of Cr(VI) contaminated wastewater, under neutral conditions.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes/crescimento & desenvolvimento , Cromo/química , Grafite/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Eletrodos , Propriedades de Superfície , Purificação da Água/instrumentação
18.
Biotechnol Lett ; 38(2): 271-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26543037

RESUMO

OBJECTIVE: To demonstrate that an enhanced sediment microbial fuel cell (SMFC) system can accelerate the degradation of cellulose in fresh water sediments as the accumulation of cellulose in lake sediments may aggravate the lake marsh, increase organic matter content and result in rapid deterioration of water quality and damage the ecosystem. RESULTS: After 330 days the highest cellulose removal efficiency (72.7 ± 2.1 %) was achieved in the presence of a SMFC with a carbon nanotube decorated cathode, followed by a SMFC without the cathode decoration (64.4 ± 2.8 %). The lowest cellulose removal efficiency (47.9 ± 2.1 %) was in the absence of SMFC. The sediment characterization analysis confirmed that the carbon nanotube decorated cathode enhances the electron transfer rate in the SMFC and improves the dissolved organic matter oxidation rate. CONCLUSION: This study offers a relatively simple and promising new method for cellulose degradation in sediment.


Assuntos
Fontes de Energia Bioelétrica , Celulose/metabolismo , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Eletrodos/microbiologia , Transporte de Elétrons , Hidrólise , Lagos/microbiologia , Nanotubos de Carbono/microbiologia , Oxirredução
19.
J Biotechnol ; 212: 19-20, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26210291

RESUMO

Clostridium scatologenes ATCC 25775(T) is an acetogenic anaerobic bacteria known to be capable of synthesizing volatile fatty acids and solvents from CO2 or CO on its autotrophic mode and producing 3-methylindole and 4-methylphenol on its heterotrophic mode. Here, we report the complete genome sequence of this strain, which might provide a lot of valuable information for developing metabolic engineering strategies to produce biofuels or chemicals from greenhouse gases.


Assuntos
Clostridium/genética , Genoma Bacteriano , Acetatos/metabolismo , Sequência de Bases , Clostridium/metabolismo , Dados de Sequência Molecular , Odorantes , RNA Bacteriano/genética , Escatol/metabolismo
20.
Sci Rep ; 5: 9341, 2015 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-25799411

RESUMO

N-Acetylneuraminic acid lyase (NAL, E.C. number 4.1.3.3) is a Class I aldolase that catalyzes the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac) from pyruvate and N-acetyl-D-mannosamine (ManNAc). Due to the high Neu5Ac cleavage activity in most isozyme forms, the enzyme catalyzes the rate-limiting step of two biocatalytic reactions producing Neu5Ac in industry. We report the biochemical characterization of a novel NAL from a "GRAS" (General recognized as safe) strain C. glutamicum ATCC 13032 (CgNal). Compared to all previously reported NALs, CgNal exhibited the lowest kcat/Km value for Neu5Ac and highest kcat/Km values for ManNAc and pyruvate, which makes CgNal favor industrial Neu5Ac synthesis process in a non-equilibrium condition. The recombinant CgNal reached the highest expression level (480 mg/L culture), and the highest reported yield of Neu5Ac was achieved (194 g/L, 0.63 M). All these unique properties make CgNal a promising biocatalyst for industrial Neu5Ac biosynthesis. Additionally, although showing the best Neu5Ac synthesis activity among the NAL family, CgNal is more related to dihydrodipicolinate synthase (DHDPS) by phylogenetic analysis. The activities of CgNal towards both NAL's and DHDPS' substrates are fairly high, which indicates CgNal a bi-functional enzyme. The sequence analysis suggests that CgNal might have adopted a unique set of residues for substrates recognition.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/química , Ácido N-Acetilneuramínico/biossíntese , Oxo-Ácido-Liases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Clonagem Molecular , Corynebacterium glutamicum/classificação , Corynebacterium glutamicum/enzimologia , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Hexosaminas/metabolismo , Hidroliases/química , Hidroliases/classificação , Hidroliases/genética , Hidroliases/metabolismo , Cinética , Dados de Sequência Molecular , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/genética , Filogenia , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...