Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39054962

RESUMO

The self-assembly behaviors of the mixtures composed of linear and cyclic AB diblock copolymers in A-selective solvents are investigated by means of Monte Carlo simulation. The simulation results indicate that a typical morphological transition of the aggregate from sphere to cylinder, to lamella, and then to vesicle can be achieved via solely adjusting the molar fraction of the cyclic diblock copolymers in the mixture. Furthermore, the simulation results show that under the condition that the pure cyclic and linear diblock copolymers can both form vesicles, the structure characteristics (e.g., the inner radius and hydrophobic membrane thickness of the vesicle) and the formation pathway of the vesicles formed by the mixtures can also be regulated via solely changing the molar fraction of the cyclic diblock copolymers in the mixture. It is worth noting that the inner radius of the vesicle can be considerably increased by increasing the molar fraction of the cyclic diblock copolymers in the mixture, which results in a remarkable increase in the inner capacity of the vesicle. This phenomenon has a unique significance in the field of drug delivery. Our simulation works can provide a new approach to the preparation of polymer materials with novel properties and functions.

2.
Langmuir ; 37(51): 14889-14897, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34905363

RESUMO

Compared with traditional cylinders that have circular cross-sections, cylinders with rectangular cross-sections can endow nanomaterials with various novel optical properties and functions. In this work, the formation of the rectangular cylinders self-assembled by compositionally bidisperse ABC triblock terpolymer blends has been investigated via numerical simulations based on self-consistent field theory. The specially designed blending systems are composed of two types of linear ABC triblock terpolymers that have the same total chain lengths and the middle B block chain lengths, but different chain lengths of the side A/C blocks. By tuning the chain length fractions and the interactions between different blocks, rectangular cylinders with a fourfold symmetry pattern were successfully obtained in our simulations. Each rectangular phase domain is self-assembled together by the short and long side blocks of the same species. The simulation results indicate that the selective aggregation of the short side blocks determines the formation of the rectangular cylindrical phase, i.e., the short side blocks prefer to aggregate at the four corners within a rectangular cylindrical phase domain. This simulation result reveals a formation mechanism that is different from the mechanism proposed in previous experiments [Asai ACS Macro Lett., 2014, 3, 166-169]. Moreover, under different middle B block chain length fractions, phase diagrams as a function of the interaction parameter between different blocks and the short side block chain length fraction have been constructed. The phase diagrams show that the parameter window of the rectangular cylinders is considerably expanded by increasing the chain length fraction of the middle B blocks. Our simulation works can provide a theoretical basis for molecular design to regulate and fabricate nanomaterials with nontraditional phase domains in future experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...