Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38927652

RESUMO

With more than 200 species of native Rubus, China is considered a center of diversity for this genus. Due to a paucity of molecular markers, the phylogenetic relationships for this genus are poorly understood. In this study, we sequenced and assembled the plastomes of 22 out of 204 Chinese Rubus species (including varieties) from three of the eight sections reported in China, i.e., the sections Chamaebatus, Idaeobatus, and Malachobatus. Plastomes were annotated and comparatively analyzed with the inclusion of two published plastomes. The plastomes of all 24 Rubus species were composed of a large single-copy region (LSC), a small single-copy region (SSC), and a pair of inverted repeat regions (IRs), and ranged in length from 155,464 to 156,506 bp. We identified 112 unique genes, including 79 protein-coding genes, 29 transfer RNAs, and four ribosomal RNAs. With highly consistent gene order, these Rubus plastomes showed strong collinearity, and no significant changes in IR boundaries were noted. Nine divergent hotspots were identified based on nucleotide polymorphism analysis: trnH-psbA, trnK-rps16, rps16-trnQ-psbK, petN-psbM, trnT-trnL, petA-psbJ, rpl16 intron, ndhF-trnL, and ycf1. Based on whole plastome sequences, we obtained a clearer phylogenetic understanding of these Rubus species. All sampled Rubus species formed a monophyletic group; however, sections Idaeobatus and Malachobatus were polyphyletic. These data and analyses demonstrate the phylogenetic utility of plastomes for systematic research within Rubus.


Assuntos
Genoma de Cloroplastos , Filogenia , Rubus , Genoma de Cloroplastos/genética , China , Rubus/genética , Rubus/classificação , Cloroplastos/genética
2.
Front Plant Sci ; 13: 1016475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388553

RESUMO

Camellia fruit is a woody edible oil source with a recalcitrant pericarp, which increases processing costs. However, the relevance of pericarp thickness variations in Camellia species remains unclear. Therefore, this study aimed to identify pericarp differences at the metabolic and transcription levels between thick-pericarp Camellia drupifera BG and thin-pericarp Camellia oleifera SG. Forty differentially accumulated metabolites were screened through non-targeted UHPLC-Q-TOF MS-based metabolite profiling. S-lignin was prominently upregulated in BG compared with SG, contributing to the thick pericarp of BG. KEGG enrichment and coexpression network analysis showed 29 differentially expressed genes associated with the lignin biosynthetic pathway, including 21 genes encoding catalysts and 8 encoding transcription factors. Nine upregulated genes encoding catalysts potentially led to S-lignin accumulation in BG pericarp, and transcription factors NAC and MYB were possibly involved in major transcriptional regulatory mechanisms. Conventional growth-related factors WRKYs and AP2/ERFs were positively associated while pathogenesis-related proteins MLP328 and NCS2 were negatively associated with S-lignin content. Thus, Camellia balances growth and defense possibly by altering lignin biosynthesis. The results of this study may guide the genetic modifications of C. drupifera to optimize its growth-defense balance and improve seed accessibility.

3.
Plants (Basel) ; 11(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365327

RESUMO

Dwarfing is an important agricultural trait for intensive cultivation and effective orchard management in modern fruit orchards. Commercial citrus production relies on grafting with rootstocks that reduce tree vigor to control plant height. Citrus growers all over the world have been attracted to dwarfing trees because of their potential for higher planting density, increased productivity, easy harvest, pruning, and efficient spraying. Dwarfing rootstocks can be used to achieve high density. As a result, the use and development of dwarfing rootstocks are important. Breeding programs in several countries have led to the production of citrus dwarf rootstocks. For example, the dwarfing rootstocks 'Flying Dragon', 'FA 517', 'HTR-051', 'US-897', and 'Red tangerine' cultivated in various regions allow the design of dense orchards. Additionally, dwarf or short-stature trees were obtained using interstocks, citrus dwarfing viroid (CDVd) and various chemical applications. This review summarizes what is known about dwarf citrus rootstocks and the mechanisms underlying rootstock-scion interactions. Despite advances in recent decades, many questions regarding rootstock-induced scion development remain unanswered. Citrus rootstocks with dwarfing potential have been investigated regarding physiological aspects, hormonal communication, mineral uptake capacity, and horticultural performance. This study lays the foundation for future research into the genetic and molecular mechanisms underlying citrus dwarfing.

4.
Front Plant Sci ; 9: 575, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868049

RESUMO

Calcium (Ca) in flesh fruits is important for quality formation and maintenance. Most studies on fruit Ca focus on one species. This study attempted to understand some universal relations to fruit Ca uptake across species. Calcium contents in fruit tissues were analyzed in different fruits, including three cultivars of litchi, two cultivars each of grape and citrus, and one cultivar each of loquat, apple, pear, Indian jujube, and longan. In situ Ca distribution was revealed with electron probe and xylem functionality visualized by dye tracing. Fruit Ca uptake rate and activity were calculated and correlated with fruit growth and pedicel anatomy. The results showed that fruit Ca uptake rate was the highest in pomes (loquat, apple, and pear), followed by Indian jujube drupe, arillate fruits (litchis and longan) and citrus, while grape berries were the lowest. Fruit Ca uptake rate showed a strong positive correlation to growth rate. However, Ca uptake activity, reflecting Ca uptake rate relative to growth, was the highest in arillate fruits and loquat and lowest in grape berries, and had a poor correlation with fruit growth rate. In all fruits, Ca concentration in the pedicel was higher than in the fruit, and they displayed a good positive correlation. In the pedicel, Ca was most abundant in the phloem. Dye tracing showed that xylem function loss occurred with maturation in all species/varieties. Apple had the poorest xylem functionality with the least development of secondary xylem, but its Ca uptake rate was among the highest. Vessel density, size and area in the pedicel showed no correlation with fruit Ca uptake rate. It is concluded that: (1) fruit growth may be a key determinant of Ca uptake; (2) the universal pattern of Ca being higher in the pedicel than in the fruit indicates existence of a pedicel-fruit "bottleneck" effect in Ca transport across species; (3) xylem functionality loss with fruit maturation is also a universal event; (4) in the pedicel, Ca is more distributed in the phloem; (5) vessel morphology in the pedicel is not rate-limiting for fruit Ca uptake; (6) phloem pathway might contribute to fruit Ca uptake.

5.
Front Plant Sci ; 8: 2228, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375603

RESUMO

Calcium (Ca) deficiency in fruit causes various physiological disorders leading to quality loss. However, disorders related to Ca deficiency are not simply caused by a shortage of calcium supply. Ca distribution is also an important relation. This study examined Ca distribution pattern in fruit and pedicel in litchi (Litchi chinensis Sonn.) and the influence of Ca channel inhibitor La3+ on fruit Ca uptake and distribution. In situ distribution of Ca in the phloem and xylem tissues of the pedicel was visualized by Ca mapping with X-ray microanalyzer. Ca2+ analogy Sr2+ was used to trace Ca2+ transport pathway to fruit as well as distribution pattern. The results showed Ca was more distributed in the pericarp, especially the distal part. Ca level in the bark/phloem was always significantly higher than in the xylem and increased with stem age, suggesting constant influx of Ca into the phloem from the xylem. La3+ increased the ratio of Ca in the xylem to that in the bark in the pedicel and significantly reduced Ca accumulation by 55.6% in fruit, suggesting influx of Ca into the symplast was involved in fruit Ca uptake. Sr2+ introduced from fruit stalk was found to be transported to fruit through the phloem as Sr was largely distributed in the phloem, and fruit stalk girdling significantly reduced Sr accumulation in the pericarp. Ca mapping across the pedicel revealed Ca-rich sites in the parenchyma cells in the phloem and along the cambium, where abundant Ca oxalate crystals were found. The results suggested extensive influx of Ca from xylem/apoplast pathway into the phloem/symplast pathway in the pedicel, which enables phloem/symplast pathway to contribute a considerable part to Ca uptake in litchi fruit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...