Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(5): e0224821, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34517755

RESUMO

The human pathogen Acinetobacter baumannii produces and utilizes acinetobactin for iron assimilation. Although two isomeric structures of acinetobactin, one featuring an oxazoline (Oxa) and the other with an isoxazolidinone (Isox) at the core, have been identified, their differential roles as virulence factors for successful infection have yet to be established. This study provides direct evidence that Oxa supplies iron more efficiently than Isox, primarily owing to its specific recognition by the cognate outer membrane receptor, BauA. The other components in the acinetobactin uptake machinery appear not to discriminate these isomers. Interestingly, Oxa was found to form a stable iron complex that is resistant to release of the chelated iron upon competition by Isox, despite their comparable apparent affinities to Fe(III). In addition, both Oxa and Isox were found to be competent iron chelators successfully scavenging iron from host metal sequestering proteins responsible for nutritional immunity. These observations collectively led us to propose a new model for acinetobactin-based iron assimilation at infection sites. Namely, Oxa is the principal siderophore mediating the core Fe(III) supply chain for A. baumannii, whereas Isox plays a minor role in the iron delivery and, alternatively, functions as an auxiliary iron collector that channels the iron pool toward Oxa. The unique siderophore utilization mechanism proposed here represents an intriguing strategy for pathogen adaptation under the various nutritional stresses encountered at infection sites. IMPORTANCE Acinetobacter baumannii has acquired antibiotic resistance at an alarming rate, and it is becoming a serious threat to society, particularly due to the paucity of effective treatment options. Acinetobactin is a siderophore of Acinetobacter baumannii, responsible for active iron supply, and it serves as a key virulence factor to counter host nutritional immunity during infection. While two acinetobactin isomers were identified, their distinctive roles for successful infection of Acinetobacter baumannii remained unsettled. This study clearly identified the isomer containing an oxazoline core as the principal siderophore based on comparative analysis of the specificity of the acinetobactin uptake machinery, the stability of the corresponding iron complexes, and the iron scavenging activity against the host iron sequestering proteins. Our findings are anticipated to stimulate efforts to discover a potent antivirulence agent against Acinetobacter baumannii that exploits the acinetobactin-based iron assimilation mechanism.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/metabolismo , Imidazóis/química , Imidazóis/metabolismo , Oxazóis/química , Oxazóis/metabolismo , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/metabolismo , Acinetobacter baumannii/química , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Ferro/metabolismo , Isomerismo , Sideróforos/química , Sideróforos/metabolismo
2.
Org Lett ; 22(7): 2806-2810, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32212712

RESUMO

The stereoselective synthesis of fimsbactin A, a siderophore of the human pathogen Acinetobacter baumannii, was established. Based on this synthetic route, various fimsbactin stereoisomeric analogues were generated and tested for their iron delivery activity for A. baumannii. This investigation revealed that the fimsbactin uptake machinery in this bacterium was indeed highly stereoselective in substrate recognition.


Assuntos
Acinetobacter baumannii/química , Estrutura Molecular , Estereoisomerismo
3.
Nat Prod Rep ; 37(4): 477-487, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31661538

RESUMO

Covering: 1994 to 2019Owing to the rapid increase in nosocomial infections by antibiotic-resistant Acinetobacter baumannii and the paucity of effective treatment options for such infections, interest in the virulence factors involved in its successful dissemination and propagation in the human host have escalated in recent years. Acinetobacin, a siderophore of A. baumannii, is responsible for iron acquisition under nutritional depravation and has been shown to be one of the key virulence factors for this bacterium. In this Highlight, recent findings regarding various chemical and biological aspects of acinetobactin metabolism closely related to the fitness of A. baumannii at the infection sites have been described. In addition, several notable efforts for identifying novel anti-infectious agents based thereon have been discussed.


Assuntos
Acinetobacter baumannii/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Imidazóis/metabolismo , Oxazóis/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Humanos , Imidazóis/química , Ferro/metabolismo , Oxazóis/química , Sideróforos/metabolismo , Relação Estrutura-Atividade
4.
Org Lett ; 20(20): 6476-6479, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30295497

RESUMO

Total synthesis of anguibactin was accomplished for the first time, and the following biochemical characterizations allowed for the determination of its Fe(III) binding mode as well as the demonstration of its iron delivery capability for Acinetobacter baumannii. These properties, in addition to the thermal stability over acinetobactin, render anguibactin as a competent surrogate siderophore that can be useful for the future development of a siderophore-based antibiotic delivery system against A. baumannii.

5.
J Org Chem ; 82(24): 12947-12966, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28903000

RESUMO

Total synthesis of the proposed structure of baulamycin A was performed. The spectral properties of the synthetic compound differ from those reported for the natural product. On the basis of comprehensive NMR study, we proposed two other possible structures for natural baulamycin A. Total syntheses of these two substances were performed, which enabled assignment of the correct structure of baulamycin A. Key features of the convergent and fully stereocontrolled route include Evans Aldol and Brown allylation reactions to construct the left fragment, a prolinol amide-derived alkylation/desymmetrization to install the methyl-substituted centers in the right fragment, and finally, a Carreira alkynylation to join both fragments. In addition, we have determined the inhibitory activities of novel baulamycin A derivatives against the enzyme SbnE. This SAR study provides useful insight into the design of novel SbnE inhibitors that overcome the drug resistance of pathogens, which cause life-threatening infections.


Assuntos
Inibidores Enzimáticos/síntese química , Álcoois Graxos/síntese química , Resorcinóis/síntese química , Alquilação , Farmacorresistência Bacteriana/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Álcoois Graxos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Resorcinóis/química , Relação Estrutura-Atividade
6.
Org Lett ; 19(3): 500-503, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28102683

RESUMO

Acinetobactin is a major siderophore utilized by the human pathogen Acinetobacter baumannii. The rapid acquisition of drug resistance by A. baumannii has garnered concern globally. Herein, acinetobactin and systematically generated analogues were prepared and characterized; the binding and cellular delivery of Fe(III) by the analogues were evaluated. This investigation not only led to the clarification of the physiologically relevant acinetobactin structure but also revealed several key structural elements for its functionality as a siderophore.


Assuntos
Imidazóis/química , Oxazóis/química , Acinetobacter baumannii , Compostos Férricos , Estrutura Molecular , Sideróforos
7.
J Biol Chem ; 291(52): 26627-26635, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-27810898

RESUMO

Mitsugumin 53 (MG53) is an E3 ligase that interacts with and ubiquitinates insulin receptor substrate-1 (IRS-1) in skeletal muscle; thus, an MG53-IRS-1 interaction disruptor (MID), which potentially sensitizes insulin signaling with an elevated level of IRS-1 in skeletal muscle, is an excellent candidate for treating insulin resistance. To screen for an MID, we developed a bimolecular luminescence complementation system using an N-terminal luciferase fragment fused with IRS-1 and a C-terminal luciferase fragment fused with an MG53 C14A mutant that binds to IRS-1 but does not have E3 ligase activity. An MID, which was discovered using the bimolecular luminescence complementation system, disrupted the molecular association of MG53 with IRS-1, thus abolishing MG53-mediated IRS-1 ubiquitination and degradation. Thus, the MID sensitized insulin signaling and increased insulin-elicited glucose uptake with an elevated level of IRS-1 in C2C12 myotubes. These data indicate that this MID holds promise as a drug candidate for treating insulin resistance.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Insulina/metabolismo , Proteínas dos Microtúbulos/metabolismo , Músculo Esquelético/metabolismo , Proteínas Nucleares/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição/metabolismo , Células Cultivadas , Humanos , Resistência à Insulina , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteólise , Transdução de Sinais/efeitos dos fármacos , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
8.
Org Biomol Chem ; 13(1): 73-6, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25374128

RESUMO

A novel fluorescence probe capable of assessing the cytoplasmic entry of siderophore-based conjugates was synthesized and evaluated by photochemical characterization and cell-based assays. The specific responsiveness to the cytoplasmic entry of the probe was implemented by adopting a disulfide linker, whose cleavage under the reducing conditions of the cytoplasm induced the display of a distinctive fluorescence signal.


Assuntos
Citoplasma/metabolismo , Desenho de Fármacos , Corantes Fluorescentes/química , Sideróforos/química , Sideróforos/metabolismo , Transporte Biológico , Dissulfetos/química , Escherichia coli/citologia , Corantes Fluorescentes/síntese química , Processos Fotoquímicos , Pseudomonas putida/citologia , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...