Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(6): 3493-3501, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897769

RESUMO

The high intensity of diverse human activities in urban-rural areas leads to complex soil Pb accumulation processes and high spatiotemporal heterogeneity, making it difficult to reveal the spatiotemporal characteristics of soil Pb accumulation in these areas. This study used a typical urban-rural area in a large city in Central China as the study area, constructed a soil Pb accumulation model, and established a spatiotemporal simulation method for soil Pb accumulation processes combining this model and land use classification and simulation results. Using this method, we simulated the soil Pb content in the study area from 2013 to 2040 and elucidated the future spatiotemporal variation characteristics of soil Pb content. The results showed that the average soil Pb content in the study area in 2013 was approximately 1.77 times the background value of the Pb content in the surface soil of the province where the city is located, indicating significant soil Pb pollution. The soil Pb content was predicted to continue increasing from 2013 to 2040, with relatively low increases (0.53-2.25 mg·kg-1) in the western, northern, and southern parts of the study area, accounting for 25.46 % of the total area, and relatively high increases (3.98-5.70 mg·kg-1) in the eastern part, accounting for 17.14 % of the total area. The increase in the area of forest land and the decrease in the area of water bodies and grassland in the eastern part of the study area led to a substantial rise in soil Pb content in this region; in addition, the spatial distribution of soil Pb content was highly correlated with the distribution of important factories and transportation facilities. This study overcomes the limitations of previous research that treated land use as unchanging and to a certain extent reflects the impact of regional land use changes on the heavy metal accumulation process. It provides a method for simulating the soil Pb accumulation process in urban-rural areas and a basis for controlling soil Pb pollution in the city's urban-rural areas.

2.
Biomed Pharmacother ; 175: 116740, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749178

RESUMO

Intestinal diseases often stem from a compromised intestinal barrier. This barrier relies on a functional epithelium and proper turnover of intestinal cells, supported by mitochondrial health. Mitochondria and lysosomes play key roles in cellular balance. Our previous researches indicate that biogenic selenium nanoparticles (SeNPs) can alleviate intestinal epithelial barrier damage by enhancing mitochondria-lysosome crosstalk, though the detailed mechanism is unclear. This study aimed to investigate the role of mitochondria-lysosome crosstalk in the protective effect of SeNPs on intestinal barrier function in mice exposed to lipopolysaccharide (LPS). The results showed that LPS exposure increased intestinal permeability in mice, leding to structural and functional damage to mitochondrial and lysosomal. Oral administration of SeNPs significantly upregulated the expression levels of TBC1D15 and Fis1, downregulated the expression levels of Rab7, Caspase-3, Cathepsin B, and MCOLN2, effectively alleviated LPS-induced mitochondrial and lysosomal dysfunction and maintained the intestinal barrier integrity in mice. Furthermore, SeNPs notably inhibited mitophagy caused by adenovirus-associated virus (AAV)-mediated RNA interference the expression of TBC1D15 in the intestine of mice, maintained mitochondrial and lysosomal homeostasis, and effectively alleviated intestinal barrier damage. These results suggested that SeNPs can regulate mitochondria-lysosome crosstalk and inhibit its damage by regulating the TBC1D15/Fis1/Rab7- signaling pathway. thereby alleviating intestinal barrier damage. It lays a theoretical foundation for elucidating the mechanism of mitochondria-lysosome crosstalk in regulating intestinal barrier damage and repair, and provides new ideas and new ways to establish safe and efficient nutritional regulation strategies to prevent and treat intestinal diseases caused by inflammation.


Assuntos
Proteínas Ativadoras de GTPase , Mucosa Intestinal , Lisossomos , Mitocôndrias , Proteínas Mitocondriais , Nanopartículas , Selênio , Transdução de Sinais , Proteínas rab de Ligação ao GTP , proteínas de unión al GTP Rab7 , Animais , Selênio/farmacologia , Nanopartículas/química , Camundongos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Ativadoras de GTPase/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Masculino , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Membrana/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Permeabilidade/efeitos dos fármacos
3.
Anim Nutr ; 15: 275-287, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38033610

RESUMO

Post-weaning diarrhea (PWD) in piglets poses a significant challenge and presents a grave threat to the global swine industry, resulting in considerable financial losses and compromising the welfare of animals. PWD is commonly associated with gut homeostatic imbalance, including oxidative stress, excessive inflammation, and microbiota dysbiosis. Antibiotic use has historically been a common initiative to combat PWD, but concerns about the development of antibiotic resistance have led to increased interest in alternative strategies. Mitochondria are key players in maintaining cellular homeostasis, and their dysfunction is intricately linked to the onset and progression of PWD. Accumulating evidence suggests that targeting mitochondrial function using antioxidant nutrients, such as vitamins, minerals and polyphenolic compounds, may represent a promising approach for preventing and treating PWD. Moreover, nutrients based on antioxidant strategies have been shown to improve mitochondrial function, restore intestinal redox balance, and reduce oxidative damage, which is a key driver of PWD. The present review begins with an overview of the potential interplay between mitochondria and gut homeostasis in the pathogenesis of PWD in piglets. Subsequently, alternative strategies to prevent and treat PWD using antioxidant nutrients to target mitochondria are described and discussed. Ultimately, we delve into potential limitations and suggest future research directions in this field for further advancement. Overall, targeting mitochondria using antioxidant nutrients may be a promising approach to combat PWD and provides a potential nutrition intervention strategy for regulating gut homeostasis of weaned piglets.

4.
Anim Nutr ; 15: 99-113, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38023380

RESUMO

Selenium nanoparticles (SeNPs) are proposed as a safer and more effective selenium delivery system than sodium selenite (Na2SeO3). Here, we investigated the effects of replacing dietary Na2SeO3 with SeNPs synthesized by Lactobacillus casei ATCC 393 on the growth performance and gut health of early-weaned piglets. Seventy-two piglets (Duroc × Landrace × Large Yorkshire) weaned at 21 d of age were divided into the control group (basal diet containing 0.3 mg Se/kg from Na2SeO3) and SeNPs group (basal diet containing 0.3 mg Se/kg from SeNPs) during a 14-d feeding period. The results revealed that SeNPs supplementation increased the average daily gain (P = 0.022) and average daily feed intake (P = 0.033), reduced (P = 0.056) the diarrhea incidence, and improved (P = 0.013) the feed conversion ratio compared with Na2SeO3. Additionally, SeNPs increased jejunal microvilli height (P = 0.006) and alleviated the intestinal barrier dysfunction by upregulating (P < 0.05) the expression levels of mucin 2 and tight junction proteins, increasing (P < 0.05) Se availability, and maintaining mitochondrial structure and function, thereby improving antioxidant capacity and immunity. Furthermore, metabolomics showed that SeNPs can regulate lipid metabolism and participate in the synthesis, secretion and action of parathyroid hormone, proximal tubule bicarbonate reclamation and tricarboxylic acid cycle. Moreover, SeNPs increased (P < 0.05) the abundance of Holdemanella and the levels of acetate and propionate. Correlation analysis suggested that Holdemanella was closely associated with the regulatory effects of SeNPs on early-weaned piglets through participating in lipid metabolism. Overall, replacing dietary Na2SeO3 with biogenic SeNPs could be a potential nutritional intervention strategy to prevent early-weaning syndrome in piglets.

5.
Toxicology ; 494: 153593, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442268

RESUMO

The intestinal epithelial barrier plays a crucial role in maintaining human and animal health. Deoxynivalenol (DON) is a mycotoxin that contaminates cereal-based foods worldwide, which is a serious threat to human and animal health. This study was aimed to investigate the protective effect of selenium nanoparticles (SeNPs) synthesized by Lactobacillus casei ATCC 393 against DON-induced intestinal epithelial barrier dysfunction and its relationship with PERK-mediated signaling pathway. IPEC-J2 cells were randomly assigned to four groups: Con (vehicle), DON (0.6 µg DON/mL, 48 h), SeNPs+DON (8 µg Se/mL, 24 h; 0.6 µg DON/mL, 48 h) and SeNPs (8 µg Se/mL, 24 h). Compared with Con group, the transepithelial electrical resistance (TEER) and the tight junction proteins expression of IPEC-J2 cells exposed to DON was increased and decreased, respectively. In addition, DON exposure led to increased ROS content, decreased antioxidant capacity, structural damage of endoplasmic reticulum (ER), and activation of endoplasmic reticulum stress (ERS)-related protein kinase R-like endoplasmic reticulum kinase (PERK) pathway in IPEC-J2. Compared with SeNPs+DON group, SeNPs alleviated oxidative stress, ER structure damage and PERK pathway activation and the increase of intestinal epithelial permeability of IPEC-J2 cells exposed to DON. PERK agonist (CCT020312) and inhibitor (GSK2656157) treatments were performed to identify the role of PERK signaling pathway in the regulatory effects of SeNPs on DON-induced intestinal epithelial barrier dysfunction. Compared with SeNPs+DON group, PERK agonist increased the expression levels of p-PERK. PERK inhibitor exerted a similar inhibitory effect to SeNPs on the p-PERK expression. In conclusion, SeNPs effectively alleviate DON-induced intestinal epithelial barrier dysfunction in IPEC-J2 cells, which are closely associated with ERS-related PERK signaling pathway. This will provide a potential solution for prevention and control of DON in the aquaculture industry.


Assuntos
Enteropatias , Nanopartículas , Selênio , Animais , Linhagem Celular , Células Epiteliais , Mucosa Intestinal/metabolismo , Nanopartículas/toxicidade , Selênio/farmacologia
6.
Biomed Pharmacother ; 165: 115033, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37379640

RESUMO

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) which is related to an immunological imbalance of the intestinal mucosa. Many clinical evidences indicate probiotics supplementation appears to be effective and safe in patients with UC. Vasoactive intestinal peptide (VIP) is an endogenous neuropeptide with multiple physiological and pathological effects. In this study, we investigated the protective effect of the combination of Lactobacillus casei ATCC 393 (L. casei ATCC 393) with VIP on dextran sodium sulfate (DSS)-induced UC in mice and the potential mechanism. The results showed that, compared with the control group, DSS treatment significantly shortened the colon length, caused inflammation and oxidative stress, and further resulted in the intestinal barrier dysfunction and gut microbiota dysbiosis. In addition, intervention with L. casei ATCC 393, VIP or L. casei ATCC 393 combined with VIP significantly reduced UC disease activity index. However, compared with L. casei ATCC 393 or VIP, L. casei ATCC 393 combined with VIP effectively relieved symptoms of UC by regulating immune response, enhancing antioxidant capacity, and regulating nuclear factor kappa-B (NF-κB) and nuclear factor erythroid-derived-2-like 2 (Nrf2) signaling pathways. In conclusion, this study suggests that L. casei ATCC 393 combined with VIP can effectively relieve DSS-induced UC, which is a promising treatment strategy for UC.


Assuntos
Colite Ulcerativa , Colite , Gastroenteropatias , Lacticaseibacillus casei , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , NF-kappa B/metabolismo , Peptídeo Intestinal Vasoativo , Fator 2 Relacionado a NF-E2/metabolismo , Dextranos/farmacologia , Camundongos Endogâmicos C57BL , Transdução de Sinais , Colo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Colite/tratamento farmacológico
7.
Food Funct ; 14(10): 4891-4904, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37144827

RESUMO

The intestinal epithelial barrier plays a fundamental role in human and animal health. Mitochondrial dysfunction can lead to intestinal epithelial barrier damage. The interaction between mitochondria and lysosomes has been proved to regulate each other's dynamics. Our previous studies have demonstrated that biogenic selenium nanoparticles (SeNPs) can alleviate intestinal epithelial barrier injury through regulating mitochondrial autophagy. In this study, we hypothesize that the protective effects of SeNPs against intestinal epithelial barrier dysfunction are associated with mitochondrial-lysosomal crosstalk. The results showed that lipopolysaccharide (LPS) and TBC1D15 siRNA transfection both caused the increase of intestinal epithelial permeability, activation of mitophagy, and mitochondrial and lysosomal dysfunction in porcine jejunal epithelial cells (IPEC-J2). SeNP pretreatment significantly up-regulated the expression levels of TBC1D15 and Fis1, down-regulated Rab7, caspase-3, MCOLN2 and cathepsin B expression levels, reduced cytoplasmic Ca2+ concentration, effectively alleviated mitochondrial and lysosomal dysfunction, and maintained the integrity of the intestinal epithelial barrier in IPEC-J2 cells exposed to LPS. Furthermore, SeNPs obviously reduced cytoplasmic Ca2+ concentration and activated the TBC1D15/Fis/Rab7-mediated signaling pathway, shortened the contact time between mitochondria and lysosomes, inhibited mitophagy, maintained mitochondrial and lysosomal homeostasis, and effectively attenuated intestinal epithelial barrier injury in IPEC-J2 cells transfected with TBC1D15 siRNA. These results indicated that the protective effect of SeNPs on intestinal epithelial barrier injury is closely associated with the TBC1D15/Rab7-mediated mitochondria-lysosome crosstalk signaling pathway.


Assuntos
Gastroenteropatias , Enteropatias , Nanopartículas , Selênio , Humanos , Animais , Suínos , Selênio/farmacologia , Selênio/metabolismo , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/farmacologia , Enteropatias/metabolismo , Mitocôndrias , Células Epiteliais/metabolismo , Lisossomos/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Ativadoras de GTPase/metabolismo
8.
Microbiol Spectr ; 11(3): e0065923, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37219421

RESUMO

Microorganisms capable of converting toxic selenite into elemental selenium (Se0) are considered an important and effective approach for bioremediation of Se contamination. In this study, we investigated the mechanism of reducing selenite to Se0 and forming Se nanoparticles (SeNPs) by food-grade probiotic Lactobacillus casei ATCC 393 (L. casei ATCC 393) through proteomics analysis. The results showed that selenite added during the exponential growth period of bacteria has the highest reduction efficiency, and 4.0 mM selenite decreased by nearly 95% within 72 h and formed protein-capped-SeNPs. Proteomics analysis revealed that selenite induced a significant increase in the expression of glutaredoxin, oxidoreductase, and ATP binding cassette (ABC) transporter, which can transport glutathione (GSH) and selenite. Selenite treatment significantly increased the CydC and CydD (putative cysteine and glutathione importer, ABC transporter) mRNA expression level, GSH content, and GSH reductase activity. Furthermore, supplementation with an additional GSH significantly increased the reduction rate of selenite, while GSH depletion significantly inhibited the reduction of selenite, indicating that GSH-mediated Painter-type reaction may be the main pathway of selenite reduction in L. casei ATCC 393. Moreover, nitrate reductase also participates in the reduction process of selenite, but it is not the primary factor. Overall, L. casei ATCC 393 effectively reduced selenite to SeNPs by GSH and nitrate reductase-mediated reduction pathway, and the GSH pathway played the decisive role, which provides an environmentally friendly biocatalyst for the bioremediation of Se contamination. IMPORTANCE Due to the high solubility and bioavailability of selenite, and its widespread use in industrial and agricultural production, it is easy to cause selenite to accumulate in the environment and reach toxic levels. Although the bacteria screened from special environments have high selenite tolerance, their safety has not been fully verified. It is necessary to screen out strains with selenite-reducing ability from nonpathogenic, functionally known, and widely used strains. Herein, we found food-grade probiotic L. casei ATCC 393 effectively reduced selenite to SeNPs by GSH and nitrate reductase-mediated reduction pathway, which provides an environmentally friendly biocatalyst for the bioremediation of Se contamination.


Assuntos
Lacticaseibacillus casei , Probióticos , Ácido Selenioso/química , Ácido Selenioso/metabolismo , Lacticaseibacillus casei/genética , Biodegradação Ambiental , Oxirredução , Proteômica , Bactérias/metabolismo , Glutationa/metabolismo
9.
Front Psychol ; 14: 1095978, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968724

RESUMO

Entrepreneurial orientation is the key factor for enterprises to obtain competitive advantages in dynamic circumstances. Thus, prior studies established the effect of psychological factors, for instance, entrepreneurial self-efficacy on entrepreneurial orientation using social cognitive theory. However, prior studies presented two main opposite views consisting of a positive and negative relationship between entrepreneurial self-efficacy and entrepreneurial orientation as well as providing no alleyway to enrich this relationship. We join the conversation on the positive linkage and argue on the essence of exploring the black box mechanisms to strengthen enterprises' entrepreneurial orientation. We employed the social cognitive theory and collected 220 valid responses from CEOs and TMTs from 10 enterprises in the high-tech industrial development zones of nine provinces in China to clarify the effect of top management team (TMT) collective efficacy, and CEO-TMT interface on the link between entrepreneurial self-efficacy and entrepreneurial orientation. Our findings show that entrepreneurial self-efficacy positively affects entrepreneurial orientation. In addition, we found that a higher level of TMT collective efficacy strengthens the positive relationship between entrepreneurial self-efficacy and entrepreneurial orientation. Moreover, we discovered differential moderating effects. First, CEO-TMT interface positively affects entrepreneurial orientation when it interacts with TMT collective efficacy and entrepreneurial self-efficacy. Second, CEO-TMT interface has a significant negative indirect effect on entrepreneurial orientation, when it only interacts with TMT collective efficacy. Our study enriches the entrepreneurial orientation literature by positioning TMT collective efficacy and CEO-TMT interface as social cognitive mechanisms underlying the development of entrepreneurial self-efficacy and entrepreneurial orientation nexus. Thus, we open a window of opportunities for CEOs and decision-makers to maintain a sustainable position in the market, grasping more opportunities in uncertain conditions via timely entries into new markets and maintaining pre-existing ones.

10.
Biol Trace Elem Res ; 201(9): 4484-4496, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36469280

RESUMO

Exposure to hypobaric hypoxia at high altitude will cause different tissue and organ damage over a long period of time. Studies have shown that hypobaric hypoxia can cause severe primary intestinal barrier dysfunction, and then cause multiple organ dysfunction. Our previous research showed that selenium nanoparticles (SeNPs) synthesized by Lactobacillus casei ATCC 393 (L. casei ATCC 393) can effectively alleviate intestinal barrier dysfunction caused by oxidative stress and inflammation in mice. This study was conducted to investigate the protective effect of biological SeNPs synthesized by L. casei ATCC 393 on intestinal barrier function in acute hypobaric hypoxic stress mice. The results showed that compared with the hypobaric hypoxic, the SeNPs synthesized by L. casei ATCC 393 by oral administration could effectively alleviate the shortening of intestinal villi, which decreased the level of diamine oxidase (DAO) and myeloperoxidase (MPO), and the expression level of tight junction protein in ileum was increased. In addition, SeNPs significantly increased the activities of superoxide dismutase (SOD), cyclooxygenase (COX-1) and glutathione peroxidase (GPx), and decreased the level of malondialdehyde (MDA), and inhibit the increase of hypoxia related factor. SeNPs effectively regulate the intestinal microecology disorder caused by hypobaric hypoxia stress, and maintain the intestinal microecology balance. In addition, oral administration of SeNPs had better protective effect on intestinal barrier function of mice under hypobaric hypoxia stress. These results suggested that SeNPs synthesized by L. casei ATCC 393 can effectively alleviate the damage of intestinal barrier function under acute hypobaric hypoxic stress, which may be closely related to the antioxidant activity of SeNPs.


Assuntos
Gastroenteropatias , Lacticaseibacillus casei , Nanopartículas , Selênio , Camundongos , Animais , Selênio/farmacologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo
11.
IEEE Trans Med Imaging ; 42(2): 380-390, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36018877

RESUMO

Glioblastoma multiforme (GBM) is the most common type of brain tumors with high recurrence and mortality rates. After chemotherapy treatment, GBM patients still show a high rate of differentiating pseudoprogression (PsP), which is often confused as true tumor progression (TTP) due to high phenotypical similarities. Thus, it is crucial to construct an automated diagnosis model for differentiating between these two types of glioma progression. However, attaining this goal is impeded by the limited data availability and the high demand for interpretability in clinical settings. In this work, we propose an interpretable structure-constrained graph neural network (ISGNN) with enhanced features to automatically discriminate between PsP and TTP. This network employs a metric-based meta-learning strategy to aggregate class-specific graph nodes, focus on meta-tasks associated with various small graphs, thus improving the classification performance on small-scale datasets. Specifically, a node feature enhancement module is proposed to account for the relative importance of node features and enhance their distinguishability through inductive learning. A graph generation constraint module enables learning reasonable graph structures to improve the efficiency of information diffusion while avoiding propagation errors. Furthermore, model interpretability can be naturally enhanced based on the learned node features and graph structures that are closely related to the classification results. Comprehensive experimental evaluation of our method demonstrated excellent interpretable results in the diagnosis of glioma progression. In general, our work provides a novel systematic GNN approach for dealing with data scarcity and enhancing decision interpretability. Our source codes will be released at https://github.com/SJTUBME-QianLab/GBM-GNN.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Difusão , Redes Neurais de Computação
12.
Neurotox Res ; 40(6): 1869-1881, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36435923

RESUMO

Deposition of aggregated amyloid beta (Aß) protein is considered to be a major causative factor that is associated with the development of oxidative stress and neuroinflammation in the pathogenesis of Alzheimer's disease (AD). Selenium nanoparticles (SeNPs) have been experimentally using for treatment of neurological disease due to their low toxicity, high bioavailability, and multiple bioactivities. This study was conducted to investigate the protective effects of biogenic SeNPs by Lactobacillus casei ATCC 393 against Aß25-35-induced toxicity in PC12 cells and its association with oxidative stress and inflammation. The results showed that SeNPs had no cytotoxicity on PC12 cells. Moreover, SeNPs entered cells through cellular endocytosis, which effectively attenuated Aß25-35-induced toxicity in PC12 cells. In addition, compared with Aß25-35 model group, SeNP pretreatment significantly enhanced the antioxidant capacity, inhibited the overproduction of reactive oxygen species (ROS), effectively regulated the inflammatory response, decreased the activity of acetylcholinesterase, significantly reduced the expression level of caspase-1 and the ratio of Bcl-2/Bax, and upregulated the expression level of p53. Furthermore, compared with Aß25-35 model group, SeNPs effectively promoted the phosphorylation of Akt and cAMP-response element-binding protein (CREB), and upregulated the expression level of brain-derived neurotrophic factor (BDNF). In addition, the Akt inhibitor (AKT inhibitor VIII, AKTi-1/2) could reverse the protective effects of SeNPs on PC12 cells. The Akt agonist (SC79) had a similar effect on PC12 cells as that of SeNPs. Overall, this study demonstrated that biogenic SeNPs can effectively alleviate the Aß25-35-induced toxicity in PC12 cells via Akt/CREB/BDNF signaling pathway.


Assuntos
Nanopartículas , Selênio , Ratos , Animais , Peptídeos beta-Amiloides/toxicidade , Células PC12 , Selênio/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Acetilcolinesterase/metabolismo , Transdução de Sinais , Fragmentos de Peptídeos/toxicidade , Apoptose
13.
Ecotoxicol Environ Saf ; 248: 114276, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36371888

RESUMO

Deoxynivalenol (DON), a secondary product of Fusarium metabolism, is common in wheat, corn, barley and other grain crops, posing a variety of adverse effects to environment, food safety, human and animal health. The absorption of DON mainly occurs in the proximal part of the small intestine, which can induce intestinal mucosal epithelial injury, and ultimately affect the growth performance and production performance of animals. This study was conducted to investigate the protective effects of selenium nanoparticles (SeNPs)-enriched Lactobacillus casei ATCC 393 (L. casei ATCC 393) on intestinal barrier function of C57BL/6 mice exposed to DON and its association with endoplasmic reticulum stress (ERS) and gut microbiota. The results showed that DON exposure increased the levels of interleukin-6 (IL-6) and interleukin-8 (IL-8), decreased the levels of interleukin-10 (IL-10) and transforming growth factor beta (TGF-ß), caused a redox imbalance and intestinal barrier dysfunction, decreased the mRNA levels of endoplasmic reticulum- resident selenoproteins, activated ERS-protein kinase R-like endoplasmic reticulum kinase (PERK) signaling pathway, altered the composition of the gut microbiota and decreased short-chain fatty acids (SCFAs) content. Dietary supplementation with SeNPs-enriched L. casei ATCC 393 can effectively protect the integrity of intestinal barrier function by reducing inflammatory response, enhancing the antioxidant capacity, up-regulating the mRNA levels of endoplasmic reticulum-resident selenoproteins, inhibiting the activation of PERK signaling pathway, reversing gut microbiota dysbiosis and increasing the content of SCFAs in mice exposed to DON. In conclusion, dietary supplementation with SeNPs-enriched L. casei ATCC 393 effectively alleviated intestinal barrier dysfunction induced by DON in C57BL/6 mice, which may be closely associated with the regulation of ERS and gut microbiota.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus casei , Nanopartículas , Selênio , Humanos , Camundongos , Animais , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Estresse do Retículo Endoplasmático , Camundongos Endogâmicos C57BL , Ácidos Graxos Voláteis/metabolismo , RNA Mensageiro/metabolismo , Suplementos Nutricionais
14.
ACS Omega ; 7(40): 35720-35726, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36249359

RESUMO

PdPb nanocrystals have drawn considerable attention due to their excellent catalytic properties, while their practical applications have been impeded by the severe degradation of activity, which is caused by the adsorption of intermediates (especially CO) during the operation. Herein, we first present porous PdPb alloys with the incorporation of amorphous Pb(OH)2 species as highly active and stable electrocatalysts. Alloying Pd with Pb species is initially proposed to optimize the Pd-Pd interatomic distance and adjust the d-band center of Pd. Importantly, the amorphous Pb(OH)2 species are beneficial to promoting the formation of OHad and the removal of COad. Therefore, PdPb-Pb(OH)2 catalysts show a mass activity of 3.18 A mgPd -1 and keep excellent stability for the ethanol oxidation reaction (EOR). In addition, further CO stripping and a series of CO poisoning experiments indicate that PdPb-Pb(OH)2 composites possess much better CO tolerance benefiting from the tuned electronic structure of Pd and surface incorporation of Pb(OH)2 species.

15.
Food Chem Toxicol ; 170: 113480, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257488

RESUMO

Selenium nanoparticles (SeNPs) with unique biological properties have been suggested as a safer and more effective platform for delivering of Selenium for biological needs. In this study, we investigated the association between gut microbiota altered by SeNPs supplementation and its metabolites under oxidative stress conditions through 16S rDNA gene sequencing analysis and untargeted metabolomics. The results showed that dietary supplementation with SeNPs attenuated diquat-induced acute toxicity in mice, as demonstrated by lower levels of inflammatory effector cells, and biochemical markers in serum such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN) and lactate dehydrogenase (LDH). SeNPs also reversed the perturbed gut microbiota composition induced by diquat, decreased the Firmicutes/Bacteroidetes ratio, and increased the abundance of beneficial bacteria such as Akkermansia, Muribaculaceae, Bacteroides and Parabacteroides. Untargeted fecal metabolomics showed that SeNPs can regulate the production of steroids and steroid derivatives, organonitrogen compounds, pyridines and derivatives and other metabolites. Microbiome-metabolome correlation analysis suggested that Parabacteroides was the key bacteria for the SeNPs intervention, which might upregulate the levels of metabolites such as trimethaphan, emedastine, berberine, desoxycortone, tetrahydrocortisone. This study demonstrated that dietary SeNPs supplementation can extensively modulate the gut microbiota and its metabolism, thereby alleviating diquat-induced acute toxicity.


Assuntos
Microbioma Gastrointestinal , Nanopartículas , Selênio , Camundongos , Animais , Selênio/farmacologia , Selênio/química , Diquat/toxicidade , Metaboloma , Nanopartículas/toxicidade , Nanopartículas/química , Bactérias
16.
Int J Nanomedicine ; 17: 4807-4827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246933

RESUMO

Purpose: The bidirectional communication between the gut and the central nervous system mediated by gut microbiota is closely related to the occurrence and development of neurodegenerative diseases, including Alzheimer's disease (AD). Selenium (Se) has been identified as playing a role against AD. Probiotics have beneficial effects on host brain function and behavior by modulating the microbiota-gut-brain axis. Herein, we evaluated the protective effects of Lactobacillus casei ATCC 393 (L. casei ATCC 393) and selenium nanoparticles-enriched L. casei ATCC 393 (L. casei ATCC 393-SeNPs) against D-galactose/aluminum chloride-induced AD model mice. Methods: The Morris Water Maze (MWM) test was used to assess cognitive function of mice. The morphology and histopathological changes, antioxidant capacity and immune responses in the brain and ileum were evaluated. The alterations in intestinal permeability of the mice were determined using FITC-dextran. Gut microbiota composition was assessed using 16s rRNA sequencing. Results: Thirteen weeks intervention with L. casei ATCC 393 or L. casei ATCC 393-SeNPs significantly improved cognitive dysfunction, and minimized amyloid beta (Aß) aggregation, hyperphosphorylation of TAU protein, and prevented neuronal death by modulating Akt/cAMP-response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway. Moreover, compared with L. casei ATCC 393, L. casei ATCC 393-SeNPs further effectively mitigated intestinal barrier dysfunction by improving antioxidant capacity, regulating immune response, restoring gut microbiota balance, and increasing the level of short-chain fatty acids and neurotransmitters, thereby inhibiting the activation of microglia and protecting brain neurons from neurotoxicity such as oxidative stress and neuroinflammation. Conclusion: These findings indicated that targeting the microbiota-gut-brain axis with L. casei ATCC 393-SeNPs may have therapeutic potential for the deficits of cognitive function in the AD model mice. Thus, we anticipate that L. casei ATCC 393-SeNPs may be a promising and safe Se nutritional supplement for use as a food additive to prevent the neurodegenerative disease.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Lacticaseibacillus casei , Nanopartículas , Doenças Neurodegenerativas , Selênio , Cloreto de Alumínio/farmacologia , Peptídeos beta-Amiloides/metabolismo , Animais , Antioxidantes/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Eixo Encéfalo-Intestino , Disfunção Cognitiva/prevenção & controle , Aditivos Alimentares , Galactose , Lacticaseibacillus casei/metabolismo , Camundongos , Nanopartículas/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Ribossômico 16S , Selênio/metabolismo , Selênio/farmacologia , Proteínas tau/metabolismo
17.
Adv Appl Microbiol ; 119: 83-128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35933118

RESUMO

Nanoparticles (NPs), which have unique properties due to their extremely small size and high surface area to volume ratio, have attracted considerable attention and become an important tool for innovation in various fields. Traditionally, NPs are synthesized by physical and chemical processes, but these methods have high capital costs and energy demand, and involve the use of toxic and hazardous chemicals, which are prone to secondary pollution of the environment. In recent years, the use of microorganism-mediated methods has emerged as an alternative to traditional physical and chemical methods. The synthesis of NPs by microorganism has the advantages of non-toxicity, eco-friendliness, low-cost, reproducibility in production, easy amplification, and well-defined morphology. Probiotics are a kind of active microorganisms beneficial to the host. Compared with other microorganisms, probiotics are characterized by non-pathogenicity, rapid growth and regulation of gene expression, and produce a variety of proteins and enzymes involved in the synthesis of NPs. Therefore, the production of NPs using probiotics is an environmentally friendly and commercially attractive method, which provides new ideas and approaches for the application of NPs in the fields of biomedicine, agriculture and environmental remediation. This review aims to summarize the literature on the biosynthesis of NPs by probiotics and their synthetic mechanisms and applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Probióticos , Química Verde/métodos , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes
18.
Oxid Med Cell Longev ; 2022: 3982613, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035212

RESUMO

The intestinal barrier plays a fundamental role in body health. Intracellular redox imbalance can trigger endoplasmic reticulum stress (ERS) and mitophagy, leading to intestinal barrier damage. Our previous studies demonstrated that mitophagy is closely associated with the protective effects of biogenic selenium nanoparticles (SeNPs) on intestinal epithelial barrier function. Thus, we hypothesize that ERS and mitophagy are likely involved in the regulatory effects of SeNPs on oxidative stress-induced intestinal epithelial barrier dysfunction. The results showed that oxidative stress or ERS caused the increase of intestinal epithelial permeability. SeNPs effectively alleviated hydrogen peroxide (H2O2-)-induced structural damage of endoplasmic reticulum (ER) and mitochondria of porcine jejunal epithelial cells (IPEC-J2). SeNPs significantly decreased intracellular inositol triphosphate (IP3) and Ca2+ concentration, down-regulated inositol trisphosphate receptor (IP3R) expression level, and up-regulated ER-resident selenoproteins mRNA levels in IPEC-J2 cells exposed to H2O2. In addition, SeNPs pretreatment significantly decreased the intracellular Ca2+, IP3, IP3R, and reactive oxygen species (ROS) levels; protected the structure and function of ER and mitochondria; and effectively alleviated the increase of intestinal epithelial permeability of IPEC-J2 cells exposed to tunicamycin (TM). Moreover, SeNPs significantly inhibited the colocalization of mitochondria and lysosomes. Furthermore, compared with TM model group, SeNPs significantly inhibited the activation of PERK/eIF2α/ATF4 and AMPK/mTOR/PINK1 signaling pathway. The PERK agonist (CCT020312) and the AMPK agonist (AICAR) could reverse the protective effects of SeNPs on IPEC-J2 cells. The PERK inhibitor (GSK2656157) and the AMPK inhibitor (compound C) had a similar effect on IPEC-J2 cells as that of SeNPs. In summary, the protective effects of SeNPs on intestinal barrier dysfunction are closely associated with ERS-related PERK and mitophagy-related AMPK signaling pathway.


Assuntos
Nanopartículas , Selênio , Proteínas Quinases Ativadas por AMP , Animais , Estresse do Retículo Endoplasmático , Células Epiteliais , Peróxido de Hidrogênio , Inositol , Mucosa Intestinal , Mitofagia , Suínos , Tunicamicina
19.
Front Psychol ; 13: 877317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693532

RESUMO

Using core self-evaluation theory, the current study assesses the effect of internal work locus of control and bricolage on social entrepreneurship orientation. We adopted the cross-sectional survey design using a sampling frame to engage 400 top executives of social enterprises in mainland China. Three hundred and seventy-two of the executives replied, presenting a response rate of 93%. Results of structural equation modeling analysis show significant positive relationships between internal work locus of control, bricolage, and social entrepreneurship orientation. The positive mediating effect of bricolage on the relationship between internal work locus of control and social entrepreneurship orientation was also found to be true. Consequently, to foster social entrepreneurship orientation, top executives of social enterprises need to gather available resources for bricolage tasks. These findings contribute new knowledge to how internal work locus of control affects social entrepreneurship orientation through the bricolage activity of Chinese social enterprises. Through core self-evaluation theory, we demonstrate the effect of internal work locus of control as a preceding factor in the relationship between bricolage and social entrepreneurship orientation.

20.
NPJ Sci Food ; 6(1): 30, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739196

RESUMO

Selenium (Se) is an essential micronutrient that promotes body health. Endemic Se deficiency is a major nutritional challenge worldwide. The low toxicity, high bioavailability, and unique properties of biogenic Se nanoparticles (SeNPs) allow them to be used as a therapeutic drug and Se nutritional supplement. This study was conducted to investigate the regulatory effects of dietary SeNPs supplementation on the oxidative stress-induced intestinal barrier dysfunction and its association with mitochondrial function and gut microbiota in mice. The effects of dietary SeNPs on intestinal barrier function and antioxidant capacity and its correlation with gut microbiota were further evaluated by a fecal microbiota transplantation experiment. The results showed that Se deficiency caused a redox imbalance, increased the levels of pro-inflammatory cytokines, altered the composition of the gut microbiota, and impaired mitochondrial structure and function, and intestinal barrier injury. Exogenous supplementation with biogenic SeNPs effectively alleviated diquat-induced intestinal barrier dysfunction by enhancing the antioxidant capacity, inhibiting the overproduction of reactive oxygen species (ROS), preventing the impairment of mitochondrial structure and function, regulating the immune response, maintaining intestinal microbiota homeostasis by regulating nuclear factor (erythroid-derived-2)-like 2 (Nrf2)-mediated NLR family pyrin domain containing 3 (NLRP3) signaling pathway. In addition, Se deficiency resulted in a gut microbiota phenotype that is more susceptible to diquat-induced intestinal barrier dysfunction. Supranutritional SeNPs intake can optimize the gut microbiota to protect against intestinal dysfunctions. This study demonstrates that dietary supplementation of SeNPs can prevent oxidative stress-induced intestinal barrier dysfunction through its regulation of mitochondria and gut microbiota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...