Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38668198

RESUMO

Two-dimensional (2D) ferromagnets have attracted significant interest for their potential in spintronic device miniaturization, especially since the discovery of ferromagnetic ordering in monolayer materials such as CrI3 and Fe3GeTe2 in 2017. This study presents a detailed investigation into the effects of the Hubbard U parameter, biaxial strain, and structural distortions on the magnetic characteristics of T″-phase VTe2. We demonstrate that setting the Hubbard U to 0 eV provides an accurate representation of the observed structural, magnetic, and electronic features for both bulk and monolayer T″-phase VTe2. The application of strain reveals two distinct ferromagnetic states in the monolayer T″-phase VTe2, each characterized by minor structural differences, but notably different magnetic moments. The T″-1 state, with reduced magnetic moments, emerges under compressive strain, while the T″-2 state, featuring increased magnetic moments, develops under tensile strain. Our analysis also compares the magnetic anisotropy between the T and T″ phases of VTe2, highlighting that the periodic lattice distortion in the T″-phase induces an in-plane anisotropy, which makes it a material with an easy-axis of magnetization. Monte Carlo simulations corroborate our findings, indicating a high Curie temperature of approximately 191 K for the T″-phase VTe2. Our research not only sheds light on the critical aspects of the VTe2 system but also suggests new pathways for enhancing low-dimensional magnetism, contributing to the advancement of spintronics and straintronics.

2.
Plant Dis ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172976

RESUMO

Blueberry (Vaccinium corymbosum) plants are popular all over the world due to their high nutritional value and health benefits. In October 2020, blueberry stems (cv. O'Neal) displaying reddish brown necrotic lesions were observed from a blueberry field in Anqing (Anhui, China), with the incidence of approximately 90%. The affected plants were somewhat stunted that had smaller fruit, and in severe cases, partial or whole plant died. We randomly selected three sampling sites to collect stems with the symptoms. Samples at the margin between diseased and healthy tissues were taken out, cut into 5 mm pieces in length,and then mixed them together. Twenty small samples were surface-sterilized, and plated onto potato dextrose agar (PDA). The plates were incubated at 25°C in the dark until fungal colonies were observed. After subculturing single hyphal tips, 9 out of 12 fungal isolates with similar morphologies were obtained. The representative isolate, LMKY12 was selected for further identification. The colonies on PDA showed white, fluffy aerial mycelia with 7.9  0.2 mm (n=5) diameter after inoculation in darkness at 25°C for one week. The colony darkens in color with age, yellowish pigmentation in reverse were observed. After 15 days of incubation, dark brown, irregular hard particles (fruiting bodies in sexual stage) accumulated on the surface of the colonies. Asci were 8-spored, sessile, club-like, hyaline, and 35-46 x 6-9 µm (n=30) in size. The ascospores were oval or spindle shaped, two-celled, constricted at division, and containing four guttulates with larger guttules at centre and smaller one at ends, measured 9-11 x 2-4 um (n=50). No sporulation observed on blueberry stems after inoculated 30 days. In order to induce the production of conidiophores, mycelial plugs were placed on blueberry leaves and cultured in darkness at 25°C. There are two types of conidia observed after 20 days of inoculation. Alpha conidia were aseptate, hyaline, smooth, ovate to ellipsoidal, often biguttulate, measured 5.33-7.26 x 1.65-2.53 µm (n=50). Beta conidia were hyaline, linear, measured 12.60-17.91 x 0.81-1.38 µm (n=30). The morphological characteristics matched the previous description of D. sojae (Udayanga et al. 2015; Guo et al. 2020). To confirm the identification, the mycelial genomic DNA of LMKY12 was extracted as a template. The rDNA internal transcribed spacer (ITS), translation elongation factor 1-α gene (TEF1-α), and calmodulin (CAL) were amplified and sequenced using primers ITS1/ITS4 (White et al. 1990), EF1-728F/EF1-986R, and CAL-228F/CAL-737R (Carbone and Kohn 1999), respectively. BLAST analysis revealed that the ITS (ON545758), CAL (OP886852), and TEF1-α (OP886853) sequences were 100% (527/527 base pairs), 99.21% (504/508 base pairs), and 99.41% (336/338 base pairs) similar to the strain FAU636 of D. sojae (KJ590718, KJ612115, KJ590761), respectively. Phylogenetic analysis based on concatenated sequences of ITS, TEF1-α, and CAL using MEGA 7.0 by maximum likelihood attributed the isolate LMKY12 to the D. sojae clade. Pathogenicity tests were performed on blueberry cv. O'Neal using detached stems (n=8) in laboratory, one-year-old potted plants (n=4) in greenhouse. Inoculations were done by placing mycelial plugs (7 mm in diameter) taken from a 7-day-old PDA culture on wounded stems. Inoculations with uncolonized agar plugs served as negative controls. Reddish dark brown lesions similar to the symptoms were observed on all inoculated stems 7 days after inoculation. No symptoms developed on control stems. Reisolations were successfully made from all the inoculated stems, and the pathogen was confirmed by the presence of pycnidia, alpha conidia and beta conidia. To our knowledge, this is the first report of D. sojae causing blueberry stem canker in China.

3.
Nano Lett ; 23(8): 3394-3400, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043331

RESUMO

Magnetic Weyl semimetals (MWSMs) exhibit unconventional transport phenomena, such as large anomalous Hall (and Nernst) effects, which are absent in spatial inversion asymmetry WSMs. Compared with its nonmagnetic counterpart, the magnetic state of a MWSM provides an alternative way for the modulation of topology. Spin-orbit torque (SOT), as an effective means of electrically controlling the magnetic states of ferromagnets, may be used to manipulate the topological magnetic states of MWSMs. Here we confirm the MWSM state of high-quality Co2MnGa film by systematically investigating the transport measurements and demonstrating that the magnetization and topology of Co2MnGa can be electrically manipulated. The electrical and magnetic optical measurements further reveal that the current-induced SOT switches the topological magnetic state in a 180-degree manner by applying positive/negative current pulses and in a 90-degree manner by alternately applying two orthogonal current pulses. This work opens up more opportunities for spintronic applications based on topological materials.

4.
ACS Nano ; 17(7): 6400-6409, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36942968

RESUMO

Electrically manipulating magnetic moments by spin-orbit torque (SOT) has great potential applications in magnetic memories and logic devices. Although there have been rich SOT studies on magnetic heterostructures, low interfacial thermal stability and high switching current density still remain an issue. Here, highly textured, polycrystalline Heusler alloy MnxPtyGe (MPG) films with various thicknesses are directly deposited onto thermally oxidized silicon wafers. The perpendicular magnetization of the MPG single layer can be reversibly switched by electrical current pulses with a magnitude as low as 4.1 × 1010Am-2, as evidenced by both the electrical transport and the magnetic optical measurements. The switching is shown to arise from inversion symmetry breaking due to the vertical composition gradient of the films after sample annealing. The SOT effective fields of the samples are analyzed systematically. It is found that the SOT efficiency increases with the film thickness, suggesting a robust bulk-like behavior in the single magnetic layer. Furthermore, a memristive characteristic has been observed due to a multidomain switching property in the single-layer MPG device. Additionally, deterministic field-free switching of magnetization is observed when the electric current flows orthogonal to the direction of the in-plane compositional gradient due to the in-plane symmetry breaking. This work proves that the MPG is a good candidate to be utilized in high-density and efficient magnetoresistive random access memory devices and other spintronic applications.

5.
Angew Chem Int Ed Engl ; 57(50): 16370-16374, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30320428

RESUMO

Sodium-ion batteries (SIBs) are a promising alternative for the large-scale energy storage owing to the natural abundance of sodium. However, the practical application of SIBs is still hindered by the low working voltage, poor rate performance, and insufficient cycling stability. A sodium-ion based full battery using a multi-ion design is now presented. The optimized full batteries delivered a high working voltage of about 4.0 V, which is the best result of reported sodium-ion full batteries. Moreover, this multi-ion battery exhibited good rate performance up to 30 C and a high capacity retention of 95 % over 500 cycles at 5 C. Although the electrochemical performance of this multi-ion battery may be further enhanced via optimizing electrolyte and electrode materials for example, the results presented clearly indicate the feasibility of this multi-ion strategy to improve the electrochemical performance of SIBs for possible energy storage applications.

6.
Nat Chem ; 10(6): 667-672, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29686378

RESUMO

Calcium-ion batteries (CIBs) are attractive candidates for energy storage because Ca2+ has low polarization and a reduction potential (-2.87 V versus standard hydrogen electrode, SHE) close to that of Li+ (-3.04 V versus SHE), promising a wide voltage window for a full battery. However, their development is limited by difficulties such as the lack of proper cathode/anode materials for reversible Ca2+ intercalation/de-intercalation, low working voltages (<2 V), low cycling stability, and especially poor room-temperature performance. Here, we report a CIB that can work stably at room temperature in a new cell configuration using graphite as the cathode and tin foils as the anode as well as the current collector. This CIB operates on a highly reversible electrochemical reaction that combines hexafluorophosphate intercalation/de-intercalation at the cathode and a Ca-involved alloying/de-alloying reaction at the anode. An optimized CIB exhibits a working voltage of up to 4.45 V with capacity retention of 95% after 350 cycles.

7.
Nano Lett ; 17(10): 6018-6026, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28771015

RESUMO

Because of their enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, cycling stability, and effective electrode capacity. In this work, we report a size-dependent excess capacity beyond theoretical value (170 mA h g-1) by introducing extra lithium storage at the reconstructed surface in nanosized LiFePO4 (LFP) cathode materials (186 and 207 mA h g-1 in samples with mean particle sizes of 83 and 42 nm, respectively). Moreover, this LFP composite also shows excellent cycling stability and high rate performance. Our multimodal experimental characterizations and ab initio calculations reveal that the surface extra lithium storage is mainly attributed to the charge passivation of Fe by the surface C-O-Fe bonds, which can enhance binding energy for surface lithium by compensating surface Fe truncated symmetry to create two types of extra positions for Li-ion storage at the reconstructed surfaces. Such surface reconstruction nanotechnology for excess Li-ion storage makes full use of the large specific surface area of the nanocrystallites, which can maintain the fast Li-ion transport and greatly enhance the capacity. This discovery and nanotechnology can be used for the design of high-capacity and efficient lithium ion batteries.

8.
Adv Mater ; 29(19)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28295667

RESUMO

In this work, combining both advantages of potassium-ion batteries and dual-ion batteries, a novel potassium-ion-based dual-ion battery (named as K-DIB) system is developed based on a potassium-ion electrolyte, using metal foil (Sn, Pb, K, or Na) as anode and expanded graphite as cathode. When using Sn foil as the anode, the K-DIB presents a high reversible capacity of 66 mAh g-1 at a current density of 50 mA g-1 over the voltage window of 3.0-5.0 V, and exhibits excellent long-term cycling performance with 93% capacity retention for 300 cycles. Moreover, as the Sn foil simultaneously acts as the anode material and the current collector, dead load and dead volume of the battery can be greatly reduced, thus the energy density of the K-DIB is further improved. It delivers a high energy density of 155 Wh kg-1 at a power density of 116 W kg-1 , which is comparable with commercial lithium-ion batteries. Thus, with the advantages of environmentally friendly, cost effective, and high energy density, this K-DIB shows attractive potential for future energy storage application.

9.
J Am Chem Soc ; 138(40): 13326-13334, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27642806

RESUMO

Understanding and further designing new layered Li(NixMnyCoz)O2 (NMC) (x + y + z = 1) materials with optimized thermal stability is important to rechargeable Li batteries (LIBs) for electrical vehicles (EV). Using ab initio calculations combined with experiments, we clarified how the thermal stability of NMC materials can be tuned by the most unstable oxygen, which is determined by the local coordination structure unit (LCSU) of oxygen (TM(Ni, Mn, Co)3-O-Li3-x'): each O atom bonds with three transition metals (TM) from the TM-layer and three to zero Li from fully discharged to charged states from the Li-layer. Under this model, how the lithium content, valence states of Ni, contents of Ni, Mn, and Co, and Ni/Li disorder to tune the thermal stability of NMC materials by affecting the sites, content, and the release temperature of the most unstable oxygen is proposed. The synergistic effect between Li vacancies and raised valence state of Ni during delithiation process can aggravate instability of oxygen, and oxygen coordinated with more nickel (especially with high valence state) in LSCU becomes more unstable at a fixed delithiation state. The Ni/Li mixing would decrease the thermal stability of the "Ni═Mn" group NMC materials but benefit the thermal stability of "Ni-rich" group, because the Ni in the Li layer would form 180° Ni-O-Ni super exchange chains in "Ni-rich" NMC materials. Mn and Co doping can tune the initial valence state of Ni, local coordination environment of oxygen, and the Ni/Li disorder, thus to tune the thermal stability directly.

10.
Nano Lett ; 16(1): 601-8, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26632008

RESUMO

Lithium iron phosphate, a widely used cathode material, crystallizes typically in olivine-type phase, α-LiFePO4 (αLFP). However, the new phase ß-LiFePO4 (ßLFP), which can be transformed from αLFP under high temperature and pressure, is originally almost electrochemically inactive with no capacity for Li-ion battery, because the Li-ions are stored in the tetrahedral [LiO4] with very high activation barrier for migration and the one-dimensional (1D) migration channels for Li-ion diffusion in αLFP disappear, while the Fe ions in the ß-phase are oriented similar to the 1D arrangement instead. In this work, using experimental studies combined with density functional theory calculations, we demonstrate that ßLFP can be activated with creation of effective paths of Li-ion migration by optimized disordering. Thus, the new phase of ßLFP cathode achieved a capacity of 128 mAh g(-1) at a rate of 0.1 C (1C = 170 mA g(-1)) with extraordinary cycling performance that 94.5% of the initial capacity retains after 1000 cycles at 1 C. The activation mechanism can be attributed to that the induced disorder (such as FeLiLiFe antisite defects, crystal distortion, and amorphous domains) creates new lithium migration passages, which free the captive stored lithium atoms and facilitate their intercalation/deintercalation from the cathode. Such materials activated by disorder are promising candidate cathodes for lithium batteries, and the related mechanism of storage and effective migration of Li-ions also provides new clues for future design of disordered-electrode materials with high capacity and high energy density.

11.
Nano Lett ; 15(9): 6102-9, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26305572

RESUMO

LiFePO4 has long been held as one of the most promising battery cathode for its high energy storage capacity. Meanwhile, although extensive studies have been conducted on the interfacial chemistries in Li-ion batteries,1-3 little is known on the atomic level about the solid-liquid interface of LiFePO4/electrolyte. Here, we report battery cathode consisted with nanosized LiFePO4 particles in aqueous electrolyte with an high charging and discharging rate of 600 C (3600/600 = 6 s charge time, 1 C = 170 mAh g(-1)) reaching 72 mAh g(-1) energy storage (42% of the theoretical capacity). By contrast, the accessible capacity sharply decreases to 20 mAh g(-1) at 200 C in organic electrolyte. After a comprehensive electrochemistry tests and ab initio calculations of the LiFePO4-H2O and LiFePO4-EC (ethylene carbonate) systems, we identified the transient formation of a Janus hydrated interface in the LiFePO4-H2O system, where the truncated symmetry of solid LiFePO4 surface is compensated by the chemisorbed H2O molecules, forming a half-solid (LiFePO4) and half-liquid (H2O) amphiphilic coordination environment that eases the Li desolvation process near the surface, which makes a fast Li-ion transport across the solid/liquid interfaces possible.

12.
J Am Chem Soc ; 137(26): 8364-7, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26098282

RESUMO

Using ab initio calculations combined with experiments, we clarified how the kinetics of Li-ion diffusion can be tuned in LiNixMnyCozO2 (NMC, x + y + z = 1) materials. It is found that Li-ions tend to choose oxygen dumbbell hopping (ODH) at the early stage of charging (delithiation), and tetrahedral site hopping (TSH) begins to dominate when more than 1/3 Li-ions are extracted. In both ODH and TSH, the Li-ions surrounded by nickel (especially with low valence state) are more likely to diffuse with low activation energy and form an advantageous path. The Li slab space, which also contributes to the effective diffusion barriers, is found to be closely associated with the delithiation process (Ni oxidation) and the contents of Ni, Co, and Mn.

13.
Protoplasma ; 249(1): 99-106, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21298301

RESUMO

Elucidating resistance mechanisms of plant cells against pathogens is essential to develop novel strategies of disease control. The actin cytoskeleton was found intimately involved in plant defense. In order to reveal how actin would be involved in the interaction between wheat and the stripe rust Puccinia striiformis f. sp. tritici, prior to fungal inoculation, wheat leaves were treated with cytochalasin A, an inhibitor of actin polymerization. Our results showed reduced incidence of hypersensitive cell death and delayed accumulation of H(2)O(2) in wheat leaves treated with cytochalasin A compared to the control. We also found that the TaPRO profilin gene exhibited significantly different expression levels in host leaves when comparing compatible and incompatible interactions. Real-time PCR analysis revealed that the expression transcript of TaPRO was lower at each time point in incompatible interactions when compared to compatible ones, and the largest difference between the two interactions occurred at 12 h post-inoculation. Both pharmacological and gene expression results collectively support the notion that the compromise of the actin microfilament is linked to the compatible interaction between the stripe rust fungus and the leaves of its wheat host.


Assuntos
Citoesqueleto de Actina/imunologia , Basidiomycota/patogenicidade , Resistência à Doença , Proteínas dos Microfilamentos/imunologia , Triticum/microbiologia , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Basidiomycota/imunologia , Morte Celular , Citocalasinas/farmacologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Profilinas/genética , Profilinas/imunologia , Profilinas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Triticum/classificação , Triticum/genética , Triticum/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...