Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(27): 12538-12547, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38917470

RESUMO

Lung cancer poses a serious threat to people's lives and health due to its high incidence rate and high mortality rate, making it necessary to effectively conduct early screening. As an important biomarker for lung cancer, the detection of n-propanol gas suffers from a low response value and a high detection limit. In this paper, flower-like Ho-doped ZnO was fabricated by the coprecipitation method for n-propanol detection at subppm concentrations. The gas sensor based on the 3% Ho-doped ZnO showed selectivity to n-propanol gas. Its response value to 100 ppm n-propanol was 341 at 140 °C, and its limit of detection (LOD) was about 25.6 ppb, which is lower than that of n-propanol in the breath of a healthy person (150 ppb). The calculation results show that the adsorption of n-propanol on a Ho-doped ZnO surface releases more energy than isopropanol, ethanol, formaldehyde, acetone, and ammonia. The enhanced gas-sensing properties of the Ho-doped ZnO material can be attributed to the fact that the Ho-doping distorts the crystal lattice of the ZnO, increases the specific surface area, and generates a large amount of oxygen defects. In addition, the doped Ho partially forms a Ho2O3/ZnO heterojunction in the material and improves the gas-sensing properties. The 3% Ho-doped ZnO material is expected to be a promising candidate for the trace detection of n-propanol gas.

2.
Inorg Chem ; 62(33): 13328-13337, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37556609

RESUMO

It is a challenging task to utilize efficient electrocatalytic metal hydroxide-based materials for the oxygen evolution reaction (OER) in order to produce clean hydrogen energy through water splitting, primarily due to the restricted availability of active sites and the undesirably high adsorption energies of oxygenated species. To address these challenges simultaneously, we intentionally engineer a hollow star-shaped Ag/CoMo-LDH heterostructure as a highly efficient electrocatalytic system. This design incorporates a considerable number of heterointerfaces between evenly dispersed Ag nanoparticles and CoMo-LDH nanosheets. The heterojunction materials have been prepared using self-assembly, in situ transformation, and spontaneous redox processes. The nanosheet-integrated hollow architecture can prevent active entities from agglomeration and facilitate mass transportation, enabling the constant exposure of active sites. Specifically, the powerful electronic interaction within the heterojunction can successfully regulate the Co3+/Co2+ ratio and the d-band center, resulting in rational optimization of the adsorption and desorption of the intermediates on the site. Benefiting from its well-defined multifunctional structures, the Ag0.4/CoMo-LDH with optimal Ag loading exhibits impressive OER activity, the overpotential being 290 mV to reach a 10 mA cm-2 current density. The present study sheds some new insights into the electron structure modulation of hollow heterostructures toward rationally designing electrocatalytic materials for the OER.

3.
Small ; 19(44): e2304132, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37381650

RESUMO

Herein, a patterned rod-like CoP@NiCoP core-shell heterostructure is designed to consist of CoP nanowires cross-linked with NiCoP nanosheets in tight strings. The interfacial interaction within the heterojunction between the two components generates a built-in electric field that adjusts the interfacial charge state and create more active sites, accelerating the charge transfer and improving supercapacitor and electrocatalytic performance. The unique core-shell structure suppresses the volume expansion during charging and discharging, achieving excellent stability. As a result, CoP@NiCoP exhibits a high specific capacitance of 2.9 F cm-2 at a current density of 3 mA cm-2 and a high ion diffusion rate (Dion is 2.95 × 10-14  cm2  s-1 ) during charging/discharging. The assembled asymmetric supercapacitor CoP@NiCoP//AC exhibits a high energy density of 42.2 Wh kg-1 at a power density of 126.5 W kg-1 and excellent stability with a capacitance retention rate of 83.8% after 10 000 cycles. Furthermore, the modulated effect induced by the interfacial interaction also endows the self-supported electrode with excellent electrocatalytic HER performance with an overpotential of 71 mV at 10 mA cm-2 . This research may provide a new perspective on the generation of built-in electric field through the rational design of heterogeneous structures for improving the electrochemical and electrocatalytical performance.

4.
Inorg Chem ; 62(21): 8347-8356, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37200596

RESUMO

Accomplishing a green hydrogen economy in reality through water spitting ultimately relies upon earth-abundant efficient electrocatalysts that can simultaneously accelerate the oxygen and hydrogen evolution reactions (OER and HER). The perspective of electronic structure modulation via interface engineering is of great significance to optimize electrocatalytic output but remains a tremendous challenge. Herein, an efficient tactic has been explored to prepare nanosheet-assembly tumbleweed-like CoFeCe-containing precursors with time-/energy-saving and easy-operating features. Subsequently, the final metal phosphide materials containing multiple interfaces, denoted CoP/FeP/CeOx, have been synthesized via the phosphorization process. Through the optimization of the Co/Fe ratio and the content of the rare-earth Ce element, the electrocatalytic activity has been regulated. As a result, bifunctional Co3Fe/Ce0.025 reaches the top of the volcano for both OER and HER simultaneously, with the smallest overpotentials of 285 mV (OER) and 178 mV (HER) at 10 mA cm-2 current density in an alkaline environment. Multicomponent heterostructure interface engineering would lead to more exposed active sites, feasible charge transport, and strong interfacial electronic interaction. More importantly, the appropriate Co/Fe ratio and Ce content can synergistically tailor the d-band center with a downshift to enhance the per-site intrinsic activity. This work would provide valuable insights to regulate the electronic structure of superior electrocatalysts toward water splitting by constructing rare-earth compounds containing multiple heterointerfaces.

5.
Dalton Trans ; 52(19): 6254-6259, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37157970

RESUMO

Nano bowl-like Co-Co6Mo6C2 coated by N,P co-doped carbon (Co-Co6Mo6C2@NPC) is reported as an electrocatalyst for Zn-air batteries. Co-Co6Mo6C2@NPC only needs an overpotential of 210 mV at 10 mA cm-2 for the OER, and the half-wave potential for the ORR is 0.81 V. In addition, the Co-Co6Mo6C2@NPC based battery shows a large open-circuit voltage of 1.335 V and a maximum power density of 160.5 mW cm-2, as well as good stability. The improved catalytic performance can be ascribed to the co-existence of Co6Mo6C2 and Co species to improve the intrinsic catalytic activity, and the bowl-like nanostructure to facilitate the mass transfer.

6.
J Pharm Biomed Anal ; 222: 115066, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36191442

RESUMO

In recent years, nitrosamines have been discovered in some types of drug products that becomes a current regulatory hotspot, and have attracted a lot attention from both regulatory authorities and industry. This manuscript provided an industry perspective on the nitrosamines research. A liquid chromatography coupled with tandem mass spectrometry(LC-MS/MS)method was developed and applied for the quantification of N-nitrosodimethylamine (NDMA) in metformin hydrochloride sustained-release tablets (MET). The key factors resulting in the NDMA formation in MET were identified through forced degradation and drug-excipient studies, which included high temperature, dimethylamine, strong alkali and oxidation conditions, peroxide and alkaline components contained in the formulation as well as the nitrite and nitrate impurities that might be presented in certain excipients. Further, API particle size and water content of the drug product would also affect the growth rate of NDMA. Therefore, the following mitigation strategies to reduce the risk of nitrosamines in the finished drug product are proposed in this manuscript: 1) avoid the use of excipients containing nitrite, nitrate and peroxide impurities; 2) avoid high temperature and strong alkaline environment in the production and storage condition; 3) maintain an appropriate water content level in the formulation. Based on the above principles, it was recommended to add antioxidant or incorporate excipient such as Na2CO3 to modify the formulation pH to weak basic environment in the formulation of MET, which can could effectively prevent formation of NDMA in the stability process.


Assuntos
Metformina , Nitrosaminas , Dimetilnitrosamina/química , Derivados da Hipromelose , Excipientes/análise , Cromatografia Líquida , Nitritos , Preparações de Ação Retardada , Nitratos , Espectrometria de Massas em Tandem , Nitrosaminas/química , Comprimidos , Peróxidos , Água
7.
ACS Appl Mater Interfaces ; 14(50): 55559-55567, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36479880

RESUMO

Electrochemical N2 reduction reaction (NRR) emerges as a highly attractive alternative to the Haber-Bosch process for producing ammonia (NH3) under ambient circumstances. Currently, this technology still faces tremendous challenges due to the low ammonia production rate and low Faradaic efficiency, urgently prompting researchers to explore highly efficient electrocatalysts. Inspired by the Fe-Mo cofactor in nitrogenase, we report Mo-doped hematite (Fe2O3) porous nanospheres containing Fe-O-Mo subunits for enhanced activity and selectivity in the electrochemical reduction from N2 to NH3. Mo-doping induces the morphology change from a solid sphere to a porous sphere and enriches lattice defects, creating more active sites. It also regulates the electronic structures of Fe2O3 to accelerate charge transfer and enhance the intrinsic activity. As a consequence, Mo-doped Fe2O3 achieves effective N2 fixation with a high ammonia production rate of 21.3 ± 1.1 µg h-1 mgcat.-1 as well as a prominent Faradaic efficiency (FE) of 11.2 ± 0.6%, superior to the undoped Fe2O3 and other iron oxide catalysts. Density functional theory (DFT) calculations further unravel that the Mo-doping in Fe2O3 (110) narrows the band gap, promotes the N2 activation on the Mo site with an elongated N≡N bond length of 1.132 Å in the end-on configuration, and optimizes an associative distal pathway with a decreased energy barrier. Our results may pave the way toward enhancing the electrocatalytic NRR performance of iron-based materials by atomic-scale heteroatom doping.

8.
J Mass Spectrom ; 57(12): e4899, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36517208

RESUMO

Oseltamivir phosphate is widely used to treat and prevent influenza, and is available in the form of capsules, powder for oral suspension, pediatric solutions, and granules. Because of the amino group, oseltamivir is easy to react with the excipients of the formulation to generate drug-excipient interaction impurities. In this research, two degradation products in a commercial oseltamivir phosphate powder for oral suspension due to interaction between API and citrate were investigated. They were characterized to be 3-((-6-acetamido-3-(ethoxycarbonyl)-5-(pentan-3-yloxy)cyclohex-3-en-1-yl)carbamoyl)-3-hydroxypentanedioic acid and 2-(2-((-6-acetamido-3-(ethoxycarbonyl)-5-(pentan-3-yloxy)cyclohex-3-en-1-yl)amino)-2-oxoethyl)-2-hydroxysuccinic acid by MS and NMR, respectively. Furthermore, the formation mechanisms of these impurities were verified, and the method of analysis of covariance was used to assess the rate of impurities' degradation. HIGHLIGHTS: Two excipient interaction degradation products in commercial oseltamivir phosphate powder for oral suspension were studied and elucidated in detail via LC-MS/MS and NMR. The incompatibility risk of pH conditioners such as citrate and citric acid with formulations that contain an amino group was disclosed in this article. Analysis of covariance was demonstrated to assess the impact of various formulations and preparation techniques on the rate of impurity degradation.


Assuntos
Excipientes , Oseltamivir , Humanos , Criança , Oseltamivir/química , Excipientes/química , Pós , Cromatografia Líquida , Espectrometria de Massas em Tandem , Contaminação de Medicamentos , Fosfatos , Citratos
9.
Nanomaterials (Basel) ; 12(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36432258

RESUMO

The oxygen evolution reaction (OER) is kinetically sluggish due to the limitation of the four-electron transfer pathway, so it is imperative to explore advanced catalysts with a superior structure and catalytic output under facile synthetic conditions. In the present work, an easily accessible strategy was proposed to implement the plant-polyphenol-involved coordination assembly on Co(OH)2 nanosheets. A TA-Fe (TA = tannic acid) coordination assembly growing on Co(OH)2 resulted in the heterostructure of Co(OH)2@TA-Fe as an electrocatalyst for OER. It could significantly decrease the overpotential to 297 mV at a current density of 10 mA cm-2. The heterostructure Co(OH)2@TA-Fe also possessed favorable reaction kinetics with a low Tafel slope of 64.8 mV dec-1 and facilitated a charge-transfer ability. The enhanced electrocatalytic performance was further unraveled to be related to the confined growth of the coordination assembly on Co(OH)2 to expose more active sites, the modulated surface properties and their synergistic effect. This study demonstrated a simple and feasible strategy to utilize inexpensive biomass-derived substances as novel modifiers to enhance the performance of energy-conversion electrocatalysis.

10.
Inorg Chem ; 61(47): 18828-18841, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36281067

RESUMO

Mononuclear rare-earth metal alkyl complexes supported by tetradentate dianionic bis(amino-oxazoline) ligands have been synthesized, and their reactivity toward small molecules and catalytic performance on ring-opening polymerization have been studied. Treatment of Ln(CH2SiMe3)3(THF)2 (Ln = Sc, Y; THF = tetrahydrofuran) with the bis(amino-oxazoline) proligand H2L afforded the corresponding rare-earth metal monoalkyl complexes L-Ln(CH2SiMe3)(THF)x (Ln = Sc, x = 0 (1); Ln = Y, x = 1 (2)). The isopropyl-substituted Sc alkyl complex L'-Sc(CH2SiMe3) (3) and the analogue Y silylamide complex L-Y[N(SiHMe2)2] (4) have been prepared by a similar method. Complexes 1 and 2 were stable in solution at room temperature but transformed gradually at elevated temperature to give a nucleophilic addition product for Sc (5) and an oxazoline ring-opened dimeric complex for Y (6). Reactions of 1 with elemental sulfur and selenium each led to insertion of one chalcogen into the Sc-C bond, and the corresponding six-coordinate mononuclear chalcogenolate complexes L-Sc(ECH2SiMe3)(THF) (E = S (7), Se (8)) were isolated. Treatment of 1 with an equimolar amount of aniline yielded the Sc anilide complex L-Sc(NHC6H5) (9), whereas the reaction of 1 with [NHEt3][BPh4] afforded the Sc ion-pair [L-Sc][BPh4] (10), which upon recrystallization led to formation of a THF-solvated product [L-Sc(THF)][BPh4] (11). Single-crystal X-ray diffraction analyses of complexes 1-3, 7-9, and 11 revealed the flexible coordination capability of the tetradentate bis(amino-oxazoline) ligand of upholding a mononuclear metal center via a torsion of the diaminobiphenyl axis. Complexes 1-4 were active catalysts for initiating the ring-opening polymerization of rac-lactide with good activity (TOF up to 3204 h-1) and heteroselectivity (Pr = 0.65-0.71). This study highlights the applicability of the well-defined tetradentate bis(amino-oxazoline) ligands for mononuclear rare-earth metal complexation and shed light on the new potential of rare-earth metal catalysts bearing this type of easily derivatizable polydentate ligand.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35820021

RESUMO

The modulation of the electronic structure is the effective access to achieve highly active electrocatalysts for the hydrogen evolution reaction (HER). Transition-metal phosphide-based heterostructures are very promising in enhancing HER performance but the facile fabrication and an in-depth study of the catalytic mechanisms still remain a challenge. In this work, the catalytically inactive n-type CeOx is successfully combined with p-type CoP to form the CoP/CeOx heterojunction. The crystalline-amorphous CoP/CeOx heterojunction is fabricated by the phosphorization of predesigned Co(OH)2/CeOx via the as-developed reduction-hydrolysis strategy. The p-n CoP/CeOx heterojunction with a strong built-in potential of 1.38 V enables the regulation of the electronic structure of active CoP within the space-charge region to enhance its intrinsic activity and facilitate the electron transfer. The functional CeOx entity and the negatively charged CoP can promote the water dissociation and optimize H adsorption, synergistically boosting the electrocatalytic HER output. As expected, the heterostructured CoP/CeOx-20:1 with the optimal ratio of Co/Ce shows significantly improved HER activity and favorable kinetics (overpotential of 118 mV at a current density of 10 mA cm-2 and Tafel slope of 77.26 mV dec-1). The present study may provide new insight into the integration of crystalline and amorphous entities into the p-n heterojunction as a highly efficient electrocatalyst for energy storage and conversion.

12.
Chem Commun (Camb) ; 58(55): 7682-7685, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35730446

RESUMO

The addition of an extra metal source induces the transformation from crystalline α-Ni(OH)2 to an amorphous NiCoFeCrMo-based high-entropy hydroxide (HEH) and maximizes the high-valence Ni3+ content in HEH. For OER electrocatalysis, the quinary HEH possesses an overpotential of 292 mV at 10 mA cm-2, a Tafel slope of 54.31 mV dec-1 and the boosted intrinsic activity, surpassing other subsystems.

13.
Chem Asian J ; 17(16): e202200392, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35621703

RESUMO

Metal-organic frameworks are often used as a chemotherapeutic drug carrier due to their diverse metal sites and good acid degradation ability. Herein Co-doped Zn-MOF-5 nanoparticles with a high Co doping rate of 60% were synthesized for chemo-chemodynamic synergistic therapy of tumor. Co ions can mediate chemodynamic therapy through Fenton-like reaction and regulate the tumor microenvironment by consuming the reduced glutathione. The CoZn-MOF-5 shows high drug loading capacity with doxorubicin loading rate of 72.8%. The CoZn-MOF-5@PEG@DOX nanodrugs has a strong killing effect on 4T1 cancer cells, suggesting the chemo-chemodynamic synergistic effect on tumor therapy.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Cobalto/farmacologia , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Neoplasias/patologia , Microambiente Tumoral , Zinco/farmacologia
14.
J Mass Spectrom ; 57(4): e4821, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35347807

RESUMO

Two unknown solution degradants were found during the dissolution testing in 0.1-M HCl for olmesartan medoxomil (OLM) tablets. The structure of the degradants was identified and characterized by liquid chromatography-ultraviolet (LC-UV), liquid chromatography with tandem mass spectrometry (LC-MS/MS), and nuclear magnetic resonance (NMR) and demonstrated to be cyclization of tetrazole and benzene in the olmesartan (OL) and OLM structures. A series of studies including stress studies, simulation studies, and mechanism-based studies were performed to reveal the potential mechanisms that lead to the formation of the unknown degradants. The study results demonstrated that the degradation was catalyzed with radicals that originated from the metal ions leached from the inner surface of high-performance liquid chromatography (HPLC) glass vials with dissolved oxygen under acidic condition. Prerinsing the glass vials with acidic solution dissolved with EDTA can effectively avoid the generation of such oxidative impurities. The present work provides new insights into the understanding of degradation pathways of OLM, which might support the development of OLM tablets.


Assuntos
Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Íons , Olmesartana Medoxomila , Espectrometria de Massas em Tandem/métodos
15.
Small Methods ; 5(4): e2001000, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34927855

RESUMO

Prussian blue analogs (PBAs), the oldest artificial cyanide-based coordination polymers, possess open framework structures, large specific surface areas, uniform metal active sites, and tunable composition, showing significant perspective in electrochemical energy storage. These electrochemically active materials have also been converted to various functional metal containing nanomaterials, including carbon encapsulated metals/metal alloys, metal oxides, metal sulfides, metal phosphides, etc. originating from the multi-element compositions as well as elaborate structure design. In this paper, a comprehensive review will be presented on the recent progresses in the development of PBA frameworks and their derivatives based electrode materials and electrocatalysts for electrochemical energy storage and conversion. In particular, it will focus on the synthesis of representative nanostructures, the structure design, and figure out the correlation between nanomaterials structure and electrochemical performance. Lastly, critical scientific challenges in this research area are also discussed and perspective directions for the future research in this field are provided, in order to provide a brand new vision into the further development of novel active materials for the next-generation advanced electrochemical devices.

16.
J Phys Chem Lett ; 12(51): 12384-12390, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34939821

RESUMO

Controllable and scalable fabrication is the precondition for realizing the large number of superior electronic and catalytic applications of MoS2. Here, we report a new type of synergistic additives, ammonium salts, for chemical vapor deposition (CVD) growth of MoS2. On the basis of the catalysis of ammonium salts, we can achieve layer and shape-controlled MoS2 domains and centimeter-scale MoS2 films. Compared to frequently used alkali metal ions as the catalysts, ammonium salts are decomposed completely at low temperature (below 513 °C), resulting in clean and nondestructive as-grown substrates. Thus, MoS2 electronic devices can be directly fabricated on them, and the redundant transfer step is no longer needed. This method can also promote the direct growth of MoS2 on the conductive substrate and boost the improvement of hydrogen evolution reaction (HER) performance. The ammonium salt-mediated CVD method will pave a new way for MoS2 toward real applications in modern electronics and catalysis.

17.
J Pharm Biomed Anal ; 204: 114248, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34274596

RESUMO

An interference peak was found while detecting related substances of azithromycin. It is impressive that the degradation peak occurred at about 70 min in the next injection of the test solution (4 mg/mL or higher). Once the degradation peak was observed, it would keep growing. By using a strategy that Q-TOF high resolution mass spectrometry with mechanism-based stress studies, followed by preparative subsequent structure characterization by 1D and 2D NMR, the unknown peak was identified as azithromycin hydrogen borate. It apparently results from azithromycin and residual boron leaching out of the inner surface of the glass volumetric flasks and vials used in the sample preparation. By simulating the above chemical process, boric acid and azithromycin were dissolved in the same extraction diluent and a big interference peak occurred. It was found that boron-free flasks and vials, such as PMP or PP flasks and PTFE or PP vials could be used for the detection of azithromycin related substances to avoid the production of azithromycin hydrogen borate.


Assuntos
Azitromicina , Vidro , Excipientes , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
18.
Mater Sci Eng C Mater Biol Appl ; 120: 111666, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545831

RESUMO

Ultra-thin two-dimensional nanosheets have attracted increasing attention due to their great application prospects in nanomaterial science and biomedicine. Herein, we report the preparation of exfoliated raw and oxidized 4-layer Ti7O13 (O-Ti7O13) and their ability to produce reactive oxygen species (ROS). The results show that O-Ti7O13 nanosheets can effectively produce ROS induced by X-ray irradiation. The 4-layer nanosheets can quickly load doxorubicin (DOX) within 5 min with a high loading rate to obtain a novel nanodrug system through their electrostatic adsorption capacity, and they exhibit a sustained release behavior. In this way, chemotherapy, radiation therapy and photodynamic therapy effectively combine for cancer synergistic treatment. We evaluated the cytotoxicity, cellular uptake and intracellular location of the O-Ti7O13 nanosheet-based drug delivery system in A549 lung cancer cells. Our results show that the O-Ti7O13/DOX complex is more cytotoxic to A549 cells than free DOX since a low concentration of loaded DOX (10 µg/mL) with a low dose of X-rays can cause the complete apoptosis of tumor cells. This work reveals that the therapeutic effect of DOX-loaded O-Ti7O13 nanosheets is strongly dependent on their loading mode, and the effects of chemotherapy and photodynamic therapy are enhanced under X-ray irradiation, which allows O-Ti7O13 nanosheet use as a photo-activated drug carrier. This work provides a new strategy for preparing 2D metal oxide nanosheets toward biomedical applications.


Assuntos
Fotoquimioterapia , Titânio , Doxorrubicina/farmacologia , Fototerapia , Espécies Reativas de Oxigênio
19.
Chem Commun (Camb) ; 57(24): 3022-3025, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33624652

RESUMO

Herein, small Co nanoparticles (NPs) encapsulated in N-doped double-shelled carbon nanocages grafted with thin carbon nanotubes (Co@CNTs@DSCNCs) were synthesized from yolk-shell bimetallic zeolitic imidazolate framework (BMZIF). For HER electrocatalysis, they exhibit higher activity (η10 = 214 mV) and more favorable kinetics than Co@CNTs@PC (PC = porous carbon) with thick CNTs and large Co NPs derived from solid BMZIF cubes.

20.
Nanomaterials (Basel) ; 11(2)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498856

RESUMO

In this work, we present a strategy to improve the gas-sensing performance of NiFe2O4 via a controllable annealing Ni/Fe precursor to fluffy NiFe2O4 nanosheet flowers. X-ray diffraction (XRD), a scanning electron microscope (SEM), nitrogen adsorption-desorption measurements and X-ray photoelectron spectroscopy (XPS) were used to characterize the crystal structure, morphology, specific surface area and surface structure. The gas-sensing performance was tested and the results demonstrate that the response was strongly influenced by the specific surface area and surface structure. The resultant NiFe2O4 nanosheet flowers with a heating rate of 8 °C min-1, which have a fluffier morphology and more oxygen vacancies in the surface, exhibited enhanced response and shortened response time toward ethanol. The easy approach facilitates the mass production of gas sensors based on bimetallic ferrites with high sensing performance via controlling the morphology and surface structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...