Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 41(49): 5223-5237, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36309571

RESUMO

Terminal differentiation failure is an important cause of rhabdomyosarcoma genesis, however, little is known about the epigenetic regulation of aberrant myogenic differentiation. Here, we show that GATA-4 recruits polycomb group proteins such as EZH2 to negatively regulate miR-29a in undifferentiated C2C12 myoblast cells, whereas recruitment of GRIP-1 to GATA-4 proteins displaces EZH2, resulting in the activation of miR-29a during myogenic differentiation of C2C12 cells. Moreover, in poorly differentiated rhabdomyosarcoma cells, EZH2 still binds to the miR-29a promoter with GATA-4 to mediate transcriptional repression of miR-29a. Interestingly, once re-differentiation of rhabdomyosarcoma cells toward skeletal muscle, EZH2 was dispelled from miR-29a promoter which is similar to that in myogenic differentiation of C2C12 cells. Eventually, this expression of miR-29a results in limited rhabdomyosarcoma cell proliferation and promotes myogenic differentiation. We thus establish that GATA-4 can function as a molecular switch in the up- and downregulation of miR-29a expression. We also demonstrate that GATA-4 acts as a tumor suppressor in rhabdomyosarcoma partly via miR-29a, which thus provides a potential therapeutic target for rhabdomyosarcoma.


Assuntos
MicroRNAs , Rabdomiossarcoma Embrionário , Rabdomiossarcoma , Animais , Camundongos , Diferenciação Celular/genética , Proliferação de Células/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , MicroRNAs/metabolismo , Mioblastos , Rabdomiossarcoma/patologia , Rabdomiossarcoma Embrionário/patologia
2.
Front Cell Dev Biol ; 9: 631942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33585489

RESUMO

Background: As a key component in the NOTCH signaling pathway, HES1 plays an important role in vertebrate heart development. Variants in the HES1 coding sequence are known to be associated with congenital heart disease (CHD). However, little is known about HES1 non-coding sequence variants and their association with the risk of developing CHD. Method and Results: We initially analyzed the non-coding sequence of the HES1 gene in 12 unrelated CHD families by direct sequencing and identified a previously unreported promoter region variant (NM_005524.4: c.-1279-1278 insAC, rs148941464) in the HES1 gene in four CHD families. The homozygous variant in patients was inherited from carrier parents with normal phenotypes, indicating a likely recessive genetic model. Given that the HES1 gene is predicted to be likely to exhibit haploinsufficiency (%HI: 11.44), we hypothesized that the HES1 homozygous variant is a genetic risk factor underlying CHD. We then carried out sequencing of this HES1 variant in 629 sporadic non-syndromic CHD cases and 696 healthy controls and performed association analysis. Interestingly, we observed a significant association of the homozygous HES1 promoter variant with CHD (18.92% of cases vs. 9.91% of controls; OR: 2.291, 95% CI: 1.637-3.207, p = 9.72 × 10-7). No significant association with CHD was observed for the HES1 promoter heterozygous variant (p > 0.05). However, association analysis tests of the HES1 homozygous variant with each subtype of CHD revealed that this homozygous variant was strongly associated with transposition of the great arteries (TGA) (OR: 3.726, 95% CI: 1.745-7.956, p = 0.0003). Moreover, the prevalence of HES1 homozygous variants in CHD patients with TGA (27.66%) was significantly higher than that in patients with other CHD subtypes or controls. Similar results were observed in a replication group of TGA (n = 64). Functional studies demonstrated that the homozygous variant in the HES1 promoter can disrupt its ability to bind RXRA, an inhibitory transcription factor, which results in abnormally high expression of the HES1 gene, indicating that this variant harbors gain-of-function effects. Conclusions: Our findings reveal that the non-coding homozygous variant in the HES1 promoter has a gain-of-function effect and is associated with an increased risk of CHD development, especially the severe TGA subtype.

3.
Genesis ; 57(11-12): e23336, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31520578

RESUMO

Acrodysostosis is an extremely rare disorder at birth, that is, characterized by skeletal dysplasia with short stature and midfacial hypoplasia, which has been reported to be caused by PDE4D and PRKAR1A gene mutations. Here, a Chinese boy with acrodysostosis, ventricular septal defect, and pulmonary hypertension was recruited for our study, and his clinical and biochemical characteristics were analyzed. A novel de novo heterozygous missense mutation (NM_001104631: c.2030A>C, p.Tyr677Ser) of the PDE4D gene was detected by whole exome sequencing and confirmed by Sanger sequencing. The c.2030A>C (p.Tyr677Ser) variant was located in exon 15 of the PDE4D gene, predicted to be damaging by a functional prediction program and shown to be highly conserved among many species. Further functional analysis showed that the p.Tyr677Ser substitution changes the function of the PDE4D protein, affects its subcellular localization in transfected cells, increases PDE4 activity in the regulation of cAMP signaling and affects cell proliferation. Our study identified a novel de novo PDE4D mutation in acrodysostosis of Chinese origin that not only contributes a deeper appreciation of the phenotypic characteristics of patients with PDE4D mutations but also expands the spectrum of PDE4D mutations.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Disostoses/genética , Deficiência Intelectual/genética , Osteocondrodisplasias/genética , Povo Asiático/genética , Pré-Escolar , China , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Disostoses/metabolismo , Células HEK293 , Células HeLa , Heterozigoto , Humanos , Deficiência Intelectual/metabolismo , Masculino , Mutação , Mutação de Sentido Incorreto/genética , Osteocondrodisplasias/metabolismo , Sequenciamento do Exoma
4.
Sci Rep ; 8(1): 12386, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120289

RESUMO

Heterotaxy syndrome (HTX) is characterized by left-right (LR) asymmetry disturbances associated with severe heart malformations. However, the exact genetic cause of HTX pathogenesis remains unclear. The aim of this study was to investigate the pathogenic mechanism underlying heterotaxy syndrome. Targeted next-generation sequencing (NGS) was performed for twenty-two candidate genes correlated with LR axis development in sixty-six HTX patients from unrelated families. Variants were filtered from databases and predicted in silico using prediction programs. A total of twenty-one potential disease-causing variants were identified in seven genes. Next, we used Sanger sequencing to confirm the identified variants in the family pedigree and found a novel hemizygous mutation (c.890G > T, p.C297F) in the ZIC3 gene in a male patient that was inherited from his mother, who was a carrier. The results of functional indicated that this ZIC3 mutation decreases transcriptional activity, affects the affinity of the GLI-binding site and results in aberrant cellular localization in transfected cells. Moreover, morpholino-knockdown experiments in zebrafish demonstrated that zic3 mutant mRNA failed to rescue the abnormal phenotype, suggesting a role for the novel ZIC3 mutation in heterotaxy syndrome.


Assuntos
Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Síndrome de Heterotaxia/diagnóstico , Síndrome de Heterotaxia/genética , Proteínas de Homeodomínio/genética , Mutação , Fatores de Transcrição/genética , Adolescente , Adulto , Idoso , Animais , Criança , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Radiografia Torácica , Tomografia Computadorizada por Raios X , Fatores de Transcrição/metabolismo , Ativação Transcricional , Adulto Jovem , Peixe-Zebra
5.
J Cell Biochem ; 116(8): 1755-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25736800

RESUMO

It has been reported that the antitumor drug doxorubicin (Dox) exerts its toxic effects via GATA-4 depletion and that over-expression of GATA-4 reverses Dox-induced toxicity and apoptosis; however, the precise mechanisms remain unclear. In this study, we observed, for the first time, that EGF protects cells against Dox-mediated growth arrest, G2/M-phase arrest, and apoptosis. Additionally, EGF expression was down-regulated in Dox-treated cells and up-regulated in GATA-4 over-expressing cells. Utilizing real-time PCR and western blotting analysis, we found that the expression of the cell cycle-associated protein cyclin D1 was inhibited in GATA-4-silenced cells and Dox-treated cells and was enhanced in GATA-4 over-expressing cells and EGF-treated cells. Furthermore, EGF treatment reversed the inhibited expression of cyclin D1 that was mediated by GATA-4 RNAi or Dox. Our results indicate that EGF, as a downstream target of Dox, may be involved in Dox-induced toxicity as well as in the protective role of GATA-4 against toxicity induced by Dox via regulating cyclin D1 expression, which elucidates a new molecular mechanism of Dox toxicity with important clinical implications.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Ciclina D1/metabolismo , Doxorrubicina/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Fator de Transcrição GATA4/metabolismo , Animais , Apoptose , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fator de Transcrição GATA4/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos
6.
Cell Mol Life Sci ; 72(10): 2005-22, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25504289

RESUMO

The regulation of cardiac differentiation is critical for maintaining normal cardiac development and function. The precise mechanisms whereby cardiac differentiation is regulated remain uncertain. Here, we have identified a GATA-4 target, EGF, which is essential for cardiogenesis and regulates cardiac differentiation in a dose- and time-dependent manner. Moreover, EGF demonstrates functional interaction with GATA-4 in inducing the cardiac differentiation of P19CL6 cells in a time- and dose-dependent manner. Biochemically, GATA-4 forms a complex with STAT3 to bind to the EGF promoter in response to EGF stimulation and cooperatively activate the EGF promoter. Functionally, the cooperation during EGF activation results in the subsequent activation of cyclin D1 expression, which partly accounts for the lack of additional induction of cardiac differentiation by the GATA-4/STAT3 complex. Thus, we propose a model in which the regulatory cascade of cardiac differentiation involves GATA-4, EGF, and cyclin D1.


Assuntos
Diferenciação Celular/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Fator de Transcrição GATA4/metabolismo , Coração/embriologia , Modelos Biológicos , Miocárdio/citologia , Transdução de Sinais/fisiologia , Animais , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Técnicas Histológicas , Imunoprecipitação , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo
7.
Dev Growth Differ ; 55(7): 676-86, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24020834

RESUMO

Insulin is a peptide hormone produced by beta cells of the pancreas. The roles of insulin in energy metabolism have been well studied, with most of the attention focused on glucose utilization, but the roles of insulin in cell proliferation and differentiation remain unclear. In this study, we observed for the first time that 10 nmol/L insulin treatment induces cell proliferation and cardiac differentiation of P19CL6 cells, whereas 50 and 100 nmol/L insulin treatment induces P19CL6 cell apoptosis and blocks cardiac differentiation of P19CL6 cells. By using real-time polymerase chain reaction (PCR) and Western blotting analysis, we found that the mRNA levels of cyclin D1 and α myosin heavy chain (α-MHC) are induced upon 10 nmol/L insulin stimulation and inhibited upon 50/100 nmol/L insulin treatment, whereas the mRNA levels of BCL-2-antagonist of cell death (BAD) exists a reverse trend. The similar results were observed in P19CL6 cells expressing GATA-6 or peroxisome proliferator-activated receptor α (PPARα). Our results identified the downstream targets of insulin, cyclin D1, BAD, α-MHC, and GATA-4, elucidate a novel molecular mechanism of insulin in promoting cell proliferation and differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Insulina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Diferenciação Celular/genética , Linhagem Celular Tumoral , Ciclina D1/genética , Ciclina D1/metabolismo , Relação Dose-Resposta a Droga , Citometria de Fluxo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Expressão Gênica/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína de Morte Celular Associada a bcl/genética , Proteína de Morte Celular Associada a bcl/metabolismo
8.
J Cell Biochem ; 114(12): 2708-17, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23794242

RESUMO

Insulin is a secreted peptide hormone identified in human pancreas to promote glucose utilization. Insulin has been observed to induce cell proliferation and myogenesis in C2C12 cells. The precise mechanisms underlying the proliferation of C2C12 cells induced by insulin remain unclear. In this study, we observed for the first time that 10 nM insulin treatment promotes C2C12 cell proliferation. Additionally, 50 and 100 nM insulin treatment induces C2C12 cell apoptosis. By utilizing real-time PCR and Western blotting analysis, we found that the mRNA levels of cyclinD1 and BAD are induced upon 10 and 50 nM/100 nM insulin treatment, respectively. The similar results were observed in C2C12 cells expressing GATA-6 or PPARα. Our results identify for the first time the downstream targets of insulin, cyclin D1, and BAD, elucidate a new molecular mechanism of insulin in promoting cell proliferation and apoptosis.


Assuntos
Proliferação de Células , Ciclina D1/genética , Insulina/genética , Proteína de Morte Celular Associada a bcl/genética , Apoptose/genética , Linhagem Celular , Linhagem Celular Tumoral , Citometria de Fluxo , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/patologia , PPAR alfa/genética , PPAR alfa/metabolismo , Transdução de Sinais , Proteína de Morte Celular Associada a bcl/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...