Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Fluoresc ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958906

RESUMO

Three d10 metal complexes, ZnL(OAc)2 (1), CdL(OAc)2 (2) and [CdL2(NO3)2]·CH3CN (3) were synthesized using the ligand (E)-N-(3-methoxy-4-methylphenyl)-1-(quinolin-2-yl)methanimine (L) and characterized by FT-IR spectra, NMR spectra, and CHN elemental analysis. Single-crystal X-ray diffraction analysis revealed that complexes 1 and 2 are isostructural, with the central metal adopting a hexacoordinate octahedral geometry, while complex 3 adopts a triangular dodecahedron geometry. Thermal gravimetric analysis showed that these complexes exhibit good thermal stability. Solid-state fluorescence spectroscopy measurements demonstrated that complexes 1-3 exhibit bright yellow-green fluorescence (λem = 564 nm for 1; 524 nm for 2; 542 nm for 3), suggesting their potential as photoluminescent materials. Furthermore, DFT calculations, including frontier molecular orbitals, energy levels, and surface electrostatic potential, provided insights into the structural and electronic spectral properties of complexes 1-3.

2.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000558

RESUMO

Male reproductive dysfunction is a clinical disease, with a large number of cases being idiopathic. Reproductive disorders have been found in obese (diet-induced obesity and diet-induced obesity-resistant) mice, but the mechanism behind the male reproductive dysfunction between them may be different. The purpose of this study was to explore the possible role and mechanism of miR-34c on sperm production in high-fat-diet-induced obesity-resistant (DIO-R) mice and GC-1 spg cells, which may differ from those in high-fat-diet-induced obesity (DIO) mice. In vivo and in vitro experiments were performed. C57BL/6J mice were fed a high-fat diet for 10 weeks to establish the DIO and DIO-R mouse model. GC-1 spg cells were used to verify the mechanism of miR-34c on sperm production. During in vivo experiments, sperm production damage was found in both DIO and DIO-R male mice. Compared to the control mice, significantly decreased levels of testosterone, LH, activities of acrosome enzyme (ACE), HAse, and activating transcription factor 1 (ATF1) were found in both DIO and DIO-R male mice (p < 0.05). Compared with the control group, the ratio of B-cell lymphoma-2 (Bcl-2)/bcl-2-associated X protein (Bax) in the DIO group was significantly decreased, and the expression level of cleaved caspase-3 was significantly increased (p < 0.05). Compared with the control group, the Bcl-2 protein expression level in the testes of the DIO-R group significantly decreased (p < 0.05). However, the Bax expression level increased. Thus, the Bcl-2/Bax ratio significantly decreased (p < 0.01); however, the factor-related apoptosis (Fas), Fas ligand (FasLG), cleaved caspase-8, caspase-8, cleaved caspase-3, and caspase-3 protein expression levels significantly increased (p < 0.05). Compared with the DIO group, in DIO-R mice, the activities of ACE, ATF1, Bcl-2, and Bcl-2/Bax's spermatogenesis protein expression decreased, while the apoptosis-promoting protein expression significantly increased (p < 0.05). During the in vitro experiment, the late and early apoptotic ratio in the miR-34c over-expression group increased. MiR-34c over-expression enhanced the expression of apoptosis-related proteins Fas/FasLG and Bax/Bcl-2 while inhibiting the expression of ATF1 and the sperm-associated protein in GC-1 spg cells. DIO and DIO-R could harm sperm production. DIO-R could impair sperm production by inducing the miR-34c-activated apoptosis and spermatogenesis pathway, which may be different from that of DIO.


Assuntos
Apoptose , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , MicroRNAs , Obesidade , Espermatogênese , Espermatozoides , Animais , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Espermatogênese/genética , Camundongos , Obesidade/metabolismo , Obesidade/genética , Espermatozoides/metabolismo , Dieta Hiperlipídica/efeitos adversos , Linhagem Celular
3.
Adv Sci (Weinh) ; : e2402767, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953387

RESUMO

Electronic fabrics exhibit desirable breathability, wearing comfort, and easy integration with garments. However, surficial deposition of electronically functional materials/compounds onto fabric substrates would consequentially alter their intrinsic properties (e.g., softness, permeability, biocompatibility, etc.). To address this issue, here, a strategy to innervate arbitrary commercial fabrics with unique spirally-layered iontronic fibrous (SLIF) sensors is presented to realize both mechanical and thermal sensing functionalities without sacrificing the intrinsic fabric properties. The mechanical sensing function is realized via mechanically regulating the interfacial ionic supercapacitance between two perpendicular SLIF sensors, while the thermal sensing function is achieved based on thermally modulating the intrinsic ionic impedance in a single SLIF sensor. The resultant SLIF sensor-innervated electronic fabrics exhibit high mechanical sensitivity of 81 N-1, superior thermal sensitivity of 34,400 Ω °C-1, and more importantly, greatly minimized mutual interference between the two sensing functions. As demonstrations, various smart garments are developed for the precise monitoring of diverse human physiological signals. Moreover, artificial intelligence-assisted object recognition with high-accuracy (97.8%) is demonstrated with a SLIF sensor-innervated smart glove. This work opens up a new path toward the facile construction of versatile smart garments for wearable healthcare, human-machine interfaces, and the Internet of Things.

4.
Cell Rep ; 43(7): 114400, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38935501

RESUMO

ADAR1-mediated RNA editing establishes immune tolerance to endogenous double-stranded RNA (dsRNA) by preventing its sensing, primarily by MDA5. Although deleting Ifih1 (encoding MDA5) rescues embryonic lethality in ADAR1-deficient mice, they still experience early postnatal death, and removing other MDA5 signaling proteins does not yield the same rescue. Here, we show that ablation of MDA5 in a liver-specific Adar knockout (KO) murine model fails to rescue hepatic abnormalities caused by ADAR1 loss. Ifih1;Adar double KO (dKO) hepatocytes accumulate endogenous dsRNAs, leading to aberrant transition to a highly inflammatory state and recruitment of macrophages into dKO livers. Mechanistically, progranulin (PGRN) appears to mediate ADAR1 deficiency-induced liver pathology, promoting interferon signaling and attracting epidermal growth factor receptor (EGFR)+ macrophages into dKO liver, exacerbating hepatic inflammation. Notably, the PGRN-EGFR crosstalk communication and consequent immune responses are significantly repressed in ADAR1high tumors, revealing that pre-neoplastic or neoplastic cells can exploit ADAR1-dependent immune tolerance to facilitate immune evasion.

5.
Plant Cell Environ ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924477

RESUMO

Predicting soil water status remotely is appealing due to its low cost and large-scale application. During drought, plants can disconnect from the soil, causing disequilibrium between soil and plant water potentials at pre-dawn. The impact of this disequilibrium on plant drought response and recovery is not well understood, potentially complicating soil water status predictions from plant spectral reflectance. This study aimed to quantify drought-induced disequilibrium, evaluate plant responses and recovery, and determine the potential for predicting soil water status from plant spectral reflectance. Two species were tested: sweet corn (Zea mays), which disconnected from the soil during intense drought, and peanut (Arachis hypogaea), which did not. Sweet corn's hydraulic disconnection led to an extended 'hydrated' phase, but its recovery was slower than peanut's, which remained connected to the soil even at lower water potentials (-5 MPa). Leaf hyperspectral reflectance successfully predicted the soil water status of peanut consistently, but only until disequilibrium occurred in sweet corn. Our results reveal different hydraulic strategies for plants coping with extreme drought and provide the first example of using spectral reflectance to quantify rhizosphere water status, emphasizing the need for species-specific considerations in soil water status predictions from canopy reflectance.

6.
Oncol Lett ; 28(1): 291, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38737979

RESUMO

[This retracts the article DOI: 10.3892/ol.2018.8695.].

7.
J Cell Mol Med ; 28(6): e18176, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38454800

RESUMO

Senescent kidney can lead to the maladaptive repairment and predispose age-related kidney diseases. Here, we explore the renal anti-senescence effect of a known kind of drug, sodium-dependent glucose transporters 2 inhibitor (SGLT2i). After 4 months intragastrically administration with dapagliflozin on senescence-accelerated mouse prone 8 (SAMP8) strain mice, the physiologically effects (lowering urine protein, enhancing glomerular blood perfusion, inhibiting expression of senescence-related biomarkers) and structural changes (improving kidney atrophy, alleviating fibrosis, decreasing glomerular mesangial proliferation) indicate the potential value of delaying kidney senescence of SGLT2i. Senescent human proximal tubular epithelial (HK-2) cells induced by H2 O2 also exhibit lower senescent markers after dapagliflozin treatment. Further mechanism exploration suggests LTBP2 have the great possibility to be the target for SGLT2i to exert its renal anti-senescence role. Dapagliflozin down-regulate the LTBP2 expression in kidney tissues and HK-2 cells with senescent phenotypes. Immunofluorescence staining show SGLT2 and LTBP2 exist colocalization, and protein-docking analysis implies there is salt-bridge formation between them; these all indicate the possibility of weak-interaction between the two proteins. Apart from reducing LTBP2 expression in intracellular area induced by H2 O2 , dapagliflozin also decrease the concentration of LTBP2 in cell culture medium. Together, these results reveal dapagliflozin can delay natural kidney senescence in non-diabetes environment; the mechanism may be through regulating the role of LTBP2.


Assuntos
Nefropatias , Inibidores do Transportador 2 de Sódio-Glicose , Camundongos , Humanos , Animais , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Rim/metabolismo , Glucosídeos/uso terapêutico , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Nefropatias/metabolismo , Proteínas de Ligação a TGF-beta Latente
8.
Angew Chem Int Ed Engl ; 63(21): e202402178, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38480851

RESUMO

Incorporating stimuli-responsive components into RNA constructs provides precise spatiotemporal control over RNA structures and functions. Despite considerable advancements, the utilization of redox-responsive stimuli for the activation of caged RNAs remains scarce. In this context, we present a novel strategy that leverages post-synthetic acylation coupled with redox-responsive chemistry to exert control over RNA. To achieve this, we design and synthesize a series of acylating reagents specifically tailored for introducing disulfide-containing acyl adducts into the 2'-OH groups of RNA ("cloaking"). Our data reveal that these acyl moieties can be readily appended, effectively blocking RNA catalytic activity and folding. We also demonstrate the traceless release and reactivation of caged RNAs ("uncloaking") through reducing stimuli. By employing this strategy, RNA exhibits rapid cellular uptake, effective distribution and activation in the cytosol without lysosomal entrapment. We anticipate that our methodology will be accessible to laboratories engaged in RNA biology and holds promise as a versatile platform for RNA-based applications.


Assuntos
Oxirredução , RNA , Acilação , RNA/química , RNA/metabolismo , Humanos , Dissulfetos/química
9.
Adv Biol (Weinh) ; 7(10): e2300199, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37688360

RESUMO

Delaying kidney senescence process will benefit renal physiologic conditions, and prompt the kidney recovering from different pathological states. The renal anti-senescence effects of sodium-glucose cotransporter-2 inhibitors (SGLT2i) and metformin have been proven in diabetic settings, but the roles of each one and combination of two drugs in natural kidney aging process remain undefined and deserve further research. Senescence-accelerated mouse prone 8 (SAMP8) were orally administered dapagliflozin, metformin, and a combination of them for 16 weeks. Dapagliflozin exhibits better effects than metformin in lowering senescence related markers, and the combination therapy shows the best results. In vitro experiments demonstrate the same results that the combination of dapagliflozin and metformin can exert a better anti-senescence effect. Blood metabolites detection in vivo shows dapagliflozin mainly leads to the change of blood metabolites enriched in choline metabolism, and metformin tends to induce change of blood metabolites enriched in purine metabolism. In conclusion, the results suggest dapagliflozin may have a better renal anti-senescence effect than metformin in non-diabetes environment, and the combination of the two drugs can strengthen the effect. The two drugs can lead to different blood metabolites alteration, which may lead to different systemic effects.

10.
Environ Int ; 180: 108205, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37717520

RESUMO

Perfluorinated compounds (PFCs) and their short-chain derivatives are contaminants found globally. Adsorption research on volatile perfluorinated compounds (VPFCs), which are the main PFCs substances that undergo transfer and migration, is particularly important. In this study, new fluorine-containing tail materials (FCTMs) were prepared by combining fluorine-containing tail organic compounds with modified glass fibers. The adsorption effects of these FCTMs were generally stronger than that of pure activated glass fibers without fluorine- tailed, with an adsorption efficiency of up to 86% based on F-F interactions. The results showed that the FCTMs had improved desorption efficiency and reusability, and higher adsorption efficiency compared with that of polyurethane foam. FTGF was applied to the active sampler, and the indoor adsorption of perfluorovaleric acid was up to 2.45 ng/m3. The adsorption kinetics and isotherm simulation results showed that the adsorption process of typical perfluorinated compounds conformed to the second-order kinetics and Langmuir model. Furthermore, Nuclear Magnetic Resonance (NMR) results showed that the chemical shift in the fluorine spectrum was significantly changed by F-F interactions. This research provides basic theoretical data for the study of VPFCs, especially short-chain VPFCs, facilitating improved scientific support for the gas phase analysis of VPFCs in the environment.

11.
Small ; 19(45): e2303301, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37423977

RESUMO

Flexible electronic sensors show great potential for health monitoring but are usually limited to single sensing functionality. To enrich their functions, complicated device configurations, sophisticated material systems, and preparation processes are typically involved, obstructing their large-scale deployment and widespread application. Herein, to achieve a good balance between simplicity and multifunctionality, a new paradigm of sensor modality for both mechanical sensing and bioelectrical sensing is presented based on a single material system and a simple solution processing approach. The whole multifunctional sensors are constructed with a pair of highly conductive ultrathin electrodes (WPU/MXene-1) and an elastic micro-structured mechanical sensing layer (WPU/MXene-2), with the human skin serving as the substrate for the whole sensors. The resultant sensors show high pressure sensitivity and low skin-electrode interfacial impedance, enabling to synergetically monitor both physiological pressure (e.g., arterial pulse signals) and epidermal bioelectrical signals (including electrocardiograph and electromyography). The universality and extensibility of this methodology to construct multifunctional sensors with different material systems are also verified. This simplified sensor modality with enhanced multifunctionality provides a novel design concept to construct future smart wearables for health monitoring and medical diagnosis.


Assuntos
Pele , Dispositivos Eletrônicos Vestíveis , Humanos , Epiderme , Condutividade Elétrica
12.
Sensors (Basel) ; 23(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37430643

RESUMO

The smartphone has become an indispensable tool in our daily lives, and the Android operating system is widely installed on our smartphones. This makes Android smartphones a prime target for malware. In order to address threats posed by malware, many researchers have proposed different malware detection approaches, including using a function call graph (FCG). Although an FCG can capture the complete call-callee semantic relationship of a function, it will be represented as a huge graph structure. The presence of many nonsensical nodes affects the detection efficiency. At the same time, the characteristics of the graph neural networks (GNNs) make the important node features in the FCG tend toward similar nonsensical node features during the propagation process. In our work, we propose an Android malware detection approach to enhance node feature differences in an FCG. Firstly, we propose an API-based node feature by which we can visually analyze the behavioral properties of different functions in the app and determine whether their behavior is benign or malicious. Then, we extract the FCG and the features of each function from the decompiled APK file. Next, we calculate the API coefficient inspired by the idea of the TF-IDF algorithm and extract the sensitive function called subgraph (S-FCSG) based on API coefficient ranking. Finally, before feeding the S-FCSG and node features into the GCN model, we add the self-loop for each node of the S-FCSG. A 1-D convolutional neural network and fully connected layers are used for further feature extraction and classification, respectively. The experimental result shows that our approach enhances the node feature differences in an FCG, and the detection accuracy is greater than that of models using other features, suggesting that malware detection based on a graph structure and GNNs has a lot of space for future study.

13.
Research (Wash D C) ; 6: 0172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333971

RESUMO

Natural tactile sensation is complex, which involves not only contact force intensity detection but also the perception of the force direction, the surface texture, and other mechanical parameters. Nevertheless, the vast majority of the developed tactile sensors can only detect the normal force, but usually cannot resolve shear force or even distinguish the directions of the force. Here, we present a new paradigm of bioinspired tactile sensors for resolving both the intensity and the directions of mechanical stimulations via synergistic microcrack-bristle structure design and cross-shaped configuration engineering. The microcrack sensing structure gives high mechanical sensitivity to the tactile sensors, and the synergistic bristle structure further amplifies the sensitivity of the sensors. The cross-shaped configuration engineering of the synergistic microcrack-bristle structure further endows the tactile sensors with good capability to detect and distinguish the directions of the applied mechanical forces. The as-fabricated tactile sensors exhibit a high sensitivity (25.76 N-1), low detection limit (5.4 mN), desirable stability (over 2,500 cycles), and good capability to resolve both mechanical intensity and directional features. As promising application scenarios, surface texture recognition and biomimetic path explorations are successfully demonstrated with these tactile sensors. This newly proposed tactile sensation strategy and technology have great potential applications in ingenious tactile sensation and construction of various robotic and bionic prostheses with high operational dexterity.

14.
Entropy (Basel) ; 25(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37238576

RESUMO

Traffic classification is the first step in network anomaly detection and is essential to network security. However, existing malicious traffic classification methods have several limitations; for example, statistical-based methods are vulnerable to hand-designed features, and deep learning-based methods are vulnerable to the balance and adequacy of data sets. In addition, the existing BERT-based malicious traffic classification methods only focus on the global features of traffic and ignore the time-series features of traffic. To address these problems, we propose a BERT-based Time-Series Feature Network (TSFN) model in this paper. The first is a Packet encoder module built by the BERT model, which completes the capture of global features of the traffic using the attention mechanism. The second is a temporal feature extraction module built by the LSTM model, which captures the time-series features of the traffic. Then, the global and time-series features of the malicious traffic are incorporated together as the final feature representation, which can better represent the malicious traffic. The experimental results show that the proposed approach can effectively improve the accuracy of malicious traffic classification on the publicly available USTC-TFC dataset, reaching an F1 value of 99.50%. This shows that the time-series features in malicious traffic can help improve the accuracy of malicious traffic classification.

15.
Molecules ; 28(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985440

RESUMO

As a new member of the silica-derivative family, modified glass fiber (MGF) has attracted extensive attention because of its excellent properties and potential applications. Surface modification of glass fiber (GF) greatly changes its performance, resulting in a series of changes to its surface structure, wettability, electrical properties, mechanical properties, and stability. This article summarizes the latest research progress in MGF, including the different modification methods, the various properties, and their advanced applications in different fields. Finally, the challenges and possible solutions were provided for future investigations of MGF.

16.
Ecotoxicol Environ Saf ; 254: 114736, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36905847

RESUMO

Tetrabromobisphenol A (TBBPA), Tetrachlorobisphenol A (TCBPA), Tetrabromobisphenol S (TBBPS) and their derivatives as the most widely used halogenated flame retardants (HFR), had been employed in the manufacturing industry to raise fire safety. HFRs have been shown to be developmentally toxic to animals and also affect plant growth. However, little was known about the molecular mechanism responded by when plants were treated with these compounds. In this study, when Arabidopsis was exposed to four HFRs (TBBPA, TCBPA, TBBPS-MDHP, TBBPS), the stress of these compounds had different inhibitory effects on seed germination and plant growth. Transcriptome and metabolome analysis showed that all four HFRs could influence the expression of transmembrane transporters to affect ion transport, Phenylpropanoid biosynthesis, Plant-pathogen interaction, MAPK signalling pathway and other pathways. In addition, the effects of different kinds of HFR on plants also have variant characteristics. It is very fascinating that Arabidopsis shows the response of biotic stress after exposure to these kinds of compounds, including the immune mechanism. Overall, the findings of the mechanism recovered by methods of transcriptome and metabolome analysis supplied a vital insight into the molecular perspective for Arabidopsis response to HFRs stress.


Assuntos
Arabidopsis , Retardadores de Chama , Bifenil Polibromatos , Animais , Transcriptoma , Arabidopsis/genética , Retardadores de Chama/toxicidade
17.
Blood ; 141(25): 3078-3090, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-36796022

RESUMO

Adenosine-to-inosine RNA editing, which is catalyzed by adenosine deaminases acting on RNA (ADAR) family of enzymes, ADAR1 and ADAR2, has been shown to contribute to multiple cancers. However, other than the chronic myeloid leukemia blast crisis, relatively little is known about its role in other types of hematological malignancies. Here, we found that ADAR2, but not ADAR1 and ADAR3, was specifically downregulated in the core-binding factor (CBF) acute myeloid leukemia (AML) with t(8;21) or inv(16) translocations. In t(8;21) AML, RUNX1-driven transcription of ADAR2 was repressed by the RUNX1-ETO additional exon 9a fusion protein in a dominant-negative manner. Further functional studies confirmed that ADAR2 could suppress leukemogenesis specifically in t(8;21) and inv16 AML cells dependent on its RNA editing capability. Expression of 2 exemplary ADAR2-regulated RNA editing targets coatomer subunit α and component of oligomeric Golgi complex 3 inhibits the clonogenic growth of human t(8;21) AML cells. Our findings support a hitherto, unappreciated mechanism leading to ADAR2 dysregulation in CBF AML and highlight the functional relevance of loss of ADAR2-mediated RNA editing to CBF AML.


Assuntos
Fatores de Ligação ao Core , Leucemia Mieloide Aguda , Humanos , Regulação para Baixo , Fatores de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Edição de RNA , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Leucemia Mieloide Aguda/genética , Adenosina/metabolismo
18.
FEBS Open Bio ; 13(1): 154-163, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36383055

RESUMO

Hypoxia has been reported to be an important factor leading to male infertility, and it has been reported that hypoxia can induce the apoptosis of mouse spermatogenic cells. Sirtuin 3 (SIRT3) has been reported to promote the degradation of hypoxia-inducible factor 1α (HIF-1α), and thus, we hypothesized that SIRT3 may influence hypoxia-induced apoptosis of spermatogonia. In this study, we overexpressed or inhibited SIRT3 in mouse type B spermatogonia GC-2 cells and then subjected the cells to hypoxia or normoxia, before examining hypoxia-responsive gene expression and cell viability. We report that SIRT3 stabilizes hypoxia-inducible factor 1α (HIF-1α) and activates its downstream target gene expression in GC-2 cells. We also show that the SIRT3 inhibitor 3-TYP suppresses HIF-1α target gene expression and alleviates hypoxia-induced apoptosis of GC-2 cells. Our study reveals the critical role and underlying mechanisms of SIRT3 in hypoxia-induced apoptosis of mouse type B spermatogonia GC-2 cells.


Assuntos
Sirtuína 3 , Camundongos , Masculino , Animais , Sirtuína 3/genética , Sirtuína 3/metabolismo , Espermatogônias/metabolismo , Apoptose , Hipóxia/metabolismo , Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
19.
Nutrients ; 14(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36364792

RESUMO

BACKGROUND AND AIMS: Dietary diversity change is associated with cognitive function, however, whether the effect still exists among the oldest-old (80+) is unclear. Our aim was to examine the effect of dietary diversity changes on cognitive impairment for the oldest-old in a large prospective cohort. METHODS: Within the Chinese Longitudinal Healthy Longevity Study, 6237 adults older than 80 years were included. The dietary diversity score (DDS) was assessed by a simplified food frequency questionnaire (FFQ). Cognitive impairment was defined as a Mini-Mental State Examination (MMSE) score lower than 18 points. Cognitive decline was defined as a reduction of total MMSE score ≥3 points, and cognitive decline of different subdomains was defined as a reduction of ≥15% in the corresponding cognitive domain. The multivariate-adjusted Cox proportional hazard model evaluated the effects of DDS change on cognitive decline. The linear mixed-effect model was used to test subsequent changes in MMSE over the years. RESULTS: During 32,813 person-years of follow-up, 1829 participants developed cognitive impairment. Relative to the high-high DDS change pattern, participants in the low-low and high-low patterns were associated with an increased risk of cognitive impairment with a hazard ratio (95% confidential interval, CI) of 1.43 (1.25, 1.63) and 1.44 (1.24, 1.67), and a faster decline in the MMSE score over the follow-up year. Participants with the low-high pattern had a similar incidence of cognitive impairment with HRs (95% CI) of 1.03 (0.88, 1.20). Compared with the stable DDS status group (-1-1), the risk of cognitive impairment was higher for those with large declines in DDS (≤-5) and the HR was 1.70 (95% CI: 1.44, 2.01). CONCLUSIONS: Even for people older than 80, dietary diversity change is a simple method to identify those who had a high risk of cognitive decline. Keeping high dietary diversity is beneficial for cognitive function and its subdomain even in the final phase of life, especially for females and the illiterate oldest-old.


Assuntos
Disfunção Cognitiva , Feminino , Humanos , Idoso de 80 Anos ou mais , Estudos de Coortes , Estudos Prospectivos , Disfunção Cognitiva/psicologia , Dieta/efeitos adversos , Testes de Estado Mental e Demência , Cognição
20.
Front Physiol ; 13: 945465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36200055

RESUMO

Background: Physical inactivity is highly prevalent in patients with hemodialysis, and a large body of evidence reported the positive effect of different exercise modalities on their health outcomes. However, the effective dosage of exercise for hemodialysis patients still requires verification. Objective: We aimed to determine the most effective exercise intensity and modality for improvements in physical function, blood pressure control, dialysis adequacy, and health-related quality of life for hemodialysis patients. Design: Systematic review with network meta-analysis of randomized trials. Data sources: Five electronic databases (PubMed, EMBASE, Web of Science, Cochrane CENTRAL, and Scopus) were searched for randomized controlled trials. Data extraction and quality appraisal were conducted by two authors independently. Data were analyzed by the R (version.3.6.2) and the Stata (version.15.0). Result: We included 1893 patients involving four exercise modalities and six exercise intensities. Combined training (aerobic exercise plus resistance exercise) has been the top-ranking exercise modality for improving the 6-min walk test (6MWT) (surface under the cumulative ranking curve analysis (SUCRA) score, 90.63), systolic blood pressure control (SUCRA score, 77.35), and diastolic pressure control (SUCRA score, 90.56). Moreover, the top-ranking exercise intensity was moderate-vigorous for 6MWT (SUCRA score, 82.36), systolic blood pressure (SUCRA score, 77.43), and diastolic blood pressure (SUCRA score, 83.75). Regarding dialysis adequacy and health-related quality of life, we found no exercise modality or intensity superior to the placebo. Conclusion: This network meta-analysis indicated that combined training and moderate-vigorous intensity might be the most effective interventions to improve 6MWT and blood pressure control. This finding helps further guide clinical exercise prescriptions for hemodialysis patients. Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD42021268535].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...