Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(8)2022 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-36016453

RESUMO

Grapevine leafroll-associated virus 3 (GLRaV-3) is one of the most important viruses affecting global grape and wine production. GLRaV-3 is the chief agent associated with grapevine leafroll disease (GLRD), the most prevalent and economically destructive grapevine viral disease complex. Response of grapevine to GLRaV-3 infection at the gene expression level is poorly characterized, limiting the understanding of GLRaV-3 pathogenesis and viral-associated symptom development. In this research, we used RNA-Seq to profile the changes in global gene expression of Cabernet franc, a premium red wine grape, analyzing leaf and berry tissues at three key different developmental stages. We have identified 1457 differentially expressed genes (DEGs) in leaves and 1181 DEGs in berries. The expression profiles of a subset of DEGs were validated through RT-qPCR, including those involved in photosynthesis (VvPSBP1), carbohydrate partitioning (VvSUT2, VvHT5, VvGBSS1, and VvSUS), flavonoid biosynthesis (VvUFGT, VvLAR1, and VvFLS), defense response (VvPR-10.3, and VvPR-10.7), and mitochondrial activities (ETFB, TIM13, and NDUFA1). GLRaV-3 infection altered source-sink relationship between leaves and berries. Photosynthesis and photosynthate assimilation were inhibited in mature leaves while increased in young berries. The expression of genes involved in anthocyanin biosynthesis increased in GLRaV-3-infected leaves, correlating with interveinal tissue reddening, a hallmark of GLRD symptoms. Notably, we identified changes in gene expression that suggest a compromised sugar export and increased sugar retrieval in GLRaV-3-infected leaves. Genes associated with mitochondria were down-regulated in both leaves and berries of Cabernet franc infected with GLRaV-3. Results of the present study suggest that GLRaV-3 infection may disrupt mitochondrial function in grapevine leaves, leading to repressed sugar export and accumulation of sugar in mature leaf tissues. The excessive sugar accumulation in GLRaV-3-infected leaves may trigger downstream GLRD symptom development and negatively impact berry quality. We propose a working model to account for the molecular events underlying the pathogenesis of GLRaV-3 and symptom development.


Assuntos
Closteroviridae , Vitis , Closteroviridae/genética , Frutas , Doenças das Plantas , Folhas de Planta , Açúcares/metabolismo , Transcriptoma , Vitis/genética
2.
Plant Methods ; 17(1): 110, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711253

RESUMO

BACKGROUND: Grapevine, as an essential fruit crop with high economic values, has been the focus of molecular studies in diverse areas. Two challenges exist in the grapevine research field: (i) the lack of a rapid, user-friendly and effective RNA isolation protocol for mature dark-skinned berries and, (ii) the lack of validated reference genes that are stable for quantification of gene expression across desired experimental conditions. Successful isolation of RNA with sufficient yield and quality is essential for downstream analyses involving nucleic acids. However, ripe berries of dark-skinned grape cultivars are notoriously challenging in RNA isolation due to high contents of polyphenolics, polysaccharides, RNase and water. RESULTS: We have optimized an RNA isolation protocol through modulating two factors at the lysis step that could impact results of RNA isolation - 2-ME concentration and berry mass. By finding the optimal combination among the two factors, our refined protocol was highly effective in isolating total RNA with high yield and quality from whole mature berries of an array of dark-skinned wine grape cultivars. Our protocol takes a much shorter time to complete, is highly effective, and eliminates the requirement for hazardous organic solvents. We have also shown that the resulting RNA preps were suitable for multiple downstream analyses, including the detection of viruses and amplification of grapevine genes using reverse transcription-polymerase chain reaction (RT-PCR), gene expression analysis via quantitative reverse transcription PCR (RT-qPCR), and RNA Sequencing (RNA-Seq). By using RNA-Seq data derived from Cabernet Franc, we have identified seven novel reference gene candidates (CYSP, NDUFS8, YLS8, EIF5A2, Gluc, GDT1, and EF-Hand) with stable expression across two tissue types, three developmental stages and status of infection with grapevine leafroll-associated virus 3 (GLRaV-3). We evaluated the stability of these candidate genes together with two conventional reference genes (actin and NAD5) using geNorm, NormFinder and BestKeeper. We found that the novel reference gene candidates outperformed both actin and NAD5. The three most stable reference genes were CYSP, NDUFS8 and YSL8, whereas actin and NAD5 were among the least stable. We further tested if there would be a difference in RT-qPCR quantification results when the most stable (CYSP) and the least stable (actin and NAD5) genes were used for normalization. We concluded that both actin and NAD5 led to erroneous RT-qPCR results in determining the statistical significance and fold-change values of gene expressional change. CONCLUSIONS: We have formulated a rapid, safe and highly effective protocol for isolating RNA from recalcitrant berry tissue of wine grapes. The resulting RNA is of high quality and suitable for RT-qPCR and RNA-Seq. We have identified and validated a set of novel reference genes based on RNA-Seq dataset. We have shown that these new reference genes are superior over actin and NAD5, two of the conventional reference genes commonly used in early studies.

3.
Viruses ; 13(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807294

RESUMO

Grapevine leafroll is one of the most widespread and highly destructive grapevine diseases that is responsible for great economic losses to the grape and wine industries throughout the world. Six distinct viruses have been implicated in this disease complex. They belong to three genera, all in the family Closteroviridae. For the sake of convenience, these viruses are named as grapevine leafroll-associated viruses (GLRaV-1, -2, -3, -4, -7, and -13). However, their etiological role in the disease has yet to be established. Furthermore, how infections with each GLRaV induce the characteristic disease symptoms remains unresolved. Here, we first provide a brief overview on each of these GLRaVs with a focus on genome structure, expression strategies and gene functions, where available. We then provide a review on the effects of GLRaV infection on the physiology, fruit quality, fruit chemical composition, and gene expression of grapevine based on the limited information so far reported in the literature. We outline key methodologies that have been used to study how GLRaV infections alter gene expression in the grapevine host at the transcriptomic level. Finally, we present a working model as an initial attempt to explain how infections with GLRaVs lead to the characteristic symptoms of grapevine leafroll disease: leaf discoloration and downward rolling. It is our hope that this review will serve as a starting point for grapevine virology and the related research community to tackle this vastly important and yet virtually uncharted territory in virus-host interactions involving woody and perennial fruit crops.


Assuntos
Closteroviridae/genética , Frutas/fisiologia , Expressão Gênica , Doenças das Plantas/virologia , Folhas de Planta/virologia , Vitis/fisiologia , Vitis/virologia , Closteroviridae/patogenicidade , Frutas/virologia , Genoma Viral , RNA Viral/genética , Análise de Sequência de DNA
4.
PLoS One ; 13(12): e0208862, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30540844

RESUMO

Grapevine leafroll-associated virus 3 (GLRaV-3) is the most widely prevalent and economically important of the complex of RNA viruses associated with grapevine leafroll disease (GLD). Phylogenetic studies have grouped GLRaV-3 isolates into nine different monophyletic groups and four supergroups, making GLRaV-3 a genetically highly diverse virus species. In addition, new divergent variants have been discovered recently around the world. Accurate identification of the virus is an essential component in the management and control of GLRaV-3; however, the diversity of GLRaV-3, coupled with the limited sequence information, have complicated the development of a reliable detection assay. In this study, GLRaV-3 sequence data available in GenBank and those generated at Foundation Plant Services, University of California-Davis, was used to develop a new RT-qPCR assay with the capacity to detect all known GLRaV-3 variants. The new assay, referred to as FPST, was challenged against samples that included plants infected with different GLRaV-3 variants and originating from 46 countries. The FPST assay detected all known GLRaV-3 variants, including the highly divergent variants, by amplifying a small highly conserved region in the 3' untranslated terminal region (UTR) of the virus genome. The reliability of the new RT-qPCR assay was confirmed by an enzyme linked immunosorbent assay (ELISA) that can detect all known GLRaV-3 variants characterized to date. Additionally, three new GLRaV-3 divergent variants, represented by four isolates, were identified using a hierarchical testing process involving the FPST assay, GLRaV-3 variant-specific assays and high-throughput sequencing analysis. These variants were distantly related to groups I, II, III, V, VI, VII and IX, but much similar to GLRaV-3 variants with no assigned group; thus, they may represent new clades. Finally, based on the phylogenetic analysis, a new GLRaV-3 subclade is proposed and named as group X.


Assuntos
Regiões 3' não Traduzidas , Closteroviridae , Variação Genética , Genoma Viral , Vitis/virologia , Closteroviridae/classificação , Closteroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vitis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...