Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 20(3): 821-835, 2025 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38886955

RESUMO

JOURNAL/nrgr/04.03/01300535-202503000-00027/figure1/v/2024-06-17T092413Z/r/image-tiff Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus, leading to long-term cognitive impairment. However, the mechanism underlying this neurogenesis impairment remains unknown. In this study, we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury. Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development, delayed neuronal maturation, and reduced the complexity of neuronal dendrites and spines. Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval. Moreover, following repetitive traumatic brain injury, neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased, C1q binding protein levels were decreased, and canonical Wnt/ß-catenin signaling was downregulated. An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function. These findings suggest that repetitive traumatic brain injury-induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.

2.
Commun Biol ; 6(1): 1001, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783835

RESUMO

Hypoxic-ischemic encephalopathy (HIE) at high-altitudes leads to neonatal mortality and long-term neurological complications without effective treatment. Acer truncatum Bunge Seed extract (ASO) is reported to have effect on cognitive improvement, but its molecular mechanisms on HIE are unclear. In this study, ASO administration contributed to reduced neuronal cell edema and improved motor ability in HIE rats at a simulated 4500-meter altitude. Transcriptomics and WGCNA analysis showed genes associated with lipid biosynthesis, redox homeostasis, neuronal growth, and synaptic plasticity regulated in the ASO group. Targeted and untargeted-lipidomics revealed decreased free fatty acids and increased phospholipids with favorable ω-3/ω-6/ω-9 fatty acid ratios, as well as reduced oxidized glycerophospholipids (OxGPs) in the ASO group. Combining multi-omics analysis demonstrated FA to FA-CoA, phospholipids metabolism, and lipid peroxidation were regulated by ASO treatment. Our results illuminated preliminary metabolism mechanism of ASO ingesting in rats, implying ASO administration as potential intervention strategy for HIE under high-altitude.


Assuntos
Acer , Hipóxia-Isquemia Encefálica , Ratos , Animais , Neuroproteção , Altitude , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/prevenção & controle , Hipóxia-Isquemia Encefálica/complicações , Multiômica , Extratos Vegetais/farmacologia , Isquemia
3.
Mol Neurobiol ; 60(12): 7285-7296, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37548854

RESUMO

The inhibitory neurons in the brain play an essential role in neural network firing patterns by releasing γ-aminobutyric acid (GABA) as the neurotransmitter. In the mouse brain, based on the protein molecular markers, inhibitory neurons are usually to be divided into three non-overlapping groups: parvalbumin (PV), neuropeptide somatostatin (SST), and vasoactive intestinal peptide (VIP)-expressing neurons. Each neuronal group exhibited unique properties in molecule, electrophysiology, circuitry, and function. Calbindin 1 (Calb1), a ubiquitous calcium-binding protein, often acts as a "divider" in excitatory neuronal classification. Based on Calb1 expression, the excitatory neurons from the same brain region can be classified into two subgroups with distinct properties. Besides excitatory neurons, Calb1 also expresses in part of inhibitory neurons. But, to date, little research focused on the intersectional relationship between inhibitory neuronal subtypes and Calb1. In this study, we genetically targeted Calb1-expression (Calb1+) and Calb1-lacking (Calb1-) subgroups of PV and SST neurons throughout the mouse brain by flexibly crossing transgenic mice relying on multi-recombinant systems, and the distribution patterns and electrophysiological properties of each subgroup were further demonstrated. Thus, this study provided novel insights and strategies into inhibitory neuronal classification.


Assuntos
Encéfalo , Redes Neurais de Computação , Animais , Camundongos , Calbindina 1 , Camundongos Transgênicos , Neurônios , Parvalbuminas
4.
Food Funct ; 14(14): 6610-6623, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37395364

RESUMO

Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of acute neonatal death and chronic neurological damage, and severe HIE can have secondary sequelae such as cognitive impairment and cerebral palsy, for which effective interventions are lacking. In this study, we found that continuous 30-day intake of Acer truncatum Bunge seed oil (ASO) reduced brain damage and improved cognitive ability in HIE rats. Using lipidomic strategies, we observed that HIE rats had decreased unsaturated fatty acids and increased lysophospholipids in the brain. However, after 30 days of ASO treatment, phospholipids, plasmalogens, and unsaturated fatty acids increased, while lysophospholipids and oxidized glycerophospholipids decreased in both serum and the brain. Enrichment analysis showed that ASO intake mainly affected sphingolipid metabolism, fat digestion and absorption, glycerolipid metabolism and glycerophospholipid metabolic pathways in serum and the brain. Cluster, correlation, and confirmatory factor analyses showed that cognitive improvement after ASO administration was attributed to increased essential phospholipids and ω3/6/9 fatty acids, coupled with decreased oxidized glycerophospholipids in HIE rats. Our findings indicate that ASO has the potential to be developed as an effective food supplement for ischemic hypoxic newborns.


Assuntos
Acer , Hipóxia-Isquemia Encefálica , Ratos , Animais , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Lipidômica , Cognição , Glicerofosfolipídeos , Óleos de Plantas/farmacologia
5.
Cell Mol Neurobiol ; 43(7): 3743-3752, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37405550

RESUMO

Retrograde tracing is an important method for dissecting neuronal connections and mapping neural circuits. Over the past decades, several virus-based retrograde tracers have been developed and have contributed to display multiple neural circuits in the brain. However, most of the previously widely used viral tools have focused on mono-transsynaptic neural tracing within the central nervous system, with very limited options for achieving polysynaptic tracing between the central and peripheral nervous systems. In this study, we generated a novel mouse line, GT mice, in which both glycoprotein (G) and ASLV-A receptor (TVA) were expressed throughout the body. Using this mouse model, in combination with the well-developed rabies virus tools (RABV-EnvA-ΔG) for monosynaptic retrograde tracing, polysynaptic retrograde tracing can be achieved. This allows functional forward mapping and long-term tracing. Furthermore, since the G-deleted rabies virus can travel upstream against the nervous system as the original strain, this mouse model can also be used for rabies pathological studies. Schematic illustrations about the application principles of GT mice in polysynaptic retrograde tracing and rabies pathological research.


Assuntos
Vírus da Raiva , Raiva , Animais , Camundongos , Vírus da Raiva/fisiologia , Neurônios/fisiologia , Encéfalo , Rede Nervosa
6.
Int J Biol Macromol ; 239: 124259, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37003381

RESUMO

Biological characteristics of natural polymers make microbial polysaccharides an excellent choice for biopharmaceuticals. Due to its easy purifying procedure and high production efficiency, it is capable of resolving the existing application issues associated with some plant and animal polysaccharides. Furthermore, microbial polysaccharides are recognized as prospective substitutes for these polysaccharides based on the search for eco-friendly chemicals. In this review, the microstructure and properties of microbial polysaccharides are utilized to highlight their characteristics and potential medical applications. From the standpoint of pathogenic processes, in-depth explanations are provided on the effects of microbial polysaccharides as active ingredients in the treatment of human diseases, anti-aging, and drug delivery. In addition, the scholarly developments and commercial applications of microbial polysaccharides as medical raw materials are also discussed. The conclusion is that understanding the use of microbial polysaccharides in biopharmaceuticals is essential for the future development of pharmacology and therapeutic medicine.


Assuntos
Produtos Biológicos , Polissacarídeos , Animais , Humanos , Estudos Prospectivos , Polissacarídeos/química , Polímeros/química , Sistemas de Liberação de Medicamentos , Produtos Biológicos/farmacologia , Produtos Biológicos/química
7.
Nat Commun ; 13(1): 7645, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496505

RESUMO

Monosynaptic viral tracers are essential tools for dissecting neuronal connectomes and for targeted delivery of molecular sensors and effectors. Viral toxicity and complex multi-injection protocols are major limiting application barriers. To overcome these barriers, we developed an anterograde monosynaptic H129Amp tracer system based on HSV-1 strain H129. The H129Amp tracer system consists of two components: an H129-dTK-T2-pacFlox helper which assists H129Amp tracer's propagation and transneuronal monosynaptic transmission. The shared viral features of tracer/helper allow for simultaneous single-injection and subsequent high expression efficiency from multiple-copy of expression cassettes in H129Amp tracer. These improvements of H129Amp tracer system shorten experiment duration from 28-day to 5-day for fast-bright monosynaptic tracing. The lack of toxic viral genes in the H129Amp tracer minimizes toxicity in postsynaptic neurons, thus offering the potential for functional anterograde mapping and long-term tracer delivery of genetic payloads. The H129Amp tracer system is a powerful tracing tool for revealing neuronal connectomes.


Assuntos
Conectoma , Rede Nervosa , Herpesvirus Humano 1/genética , Neurônios
8.
J Phys Ther Sci ; 33(12): 917-923, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34873374

RESUMO

[Purpose] This study aimed to explain the effect of a dual-task technology that utilizes motor and/or cognitive skills on the performance of major tasks, postural control, and gait consistency. [Participants and Methods] Eighteen healthy adults were divided into two groups: the single-word dual-task group and the control group (study 1). We enrolled 32 healthy adults to perform four-word Stroop (study 2) and sit-to-stand tasks simultaneously to determine the attentional demand for postural control and locomotion. [Results] The dynamic condition of postural control differed significantly between the single-task and single-word dual-task groups in Study 1. In Study 2, postural control in the four-word dual-task condition improved under both static and dynamic conditions. On comparing the results of studies 1 and 2, we found that during a four-word dual-task, healthy participants experienced a more significant decrease in postural sway than that experienced during the single-word dual-task. [Conclusion] Dual task of Stroop task with sit-to-stand could improve a postural control.

9.
Neurosci Bull ; 37(5): 701-719, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33367996

RESUMO

Anterograde viral tracers are powerful and essential tools for dissecting the output targets of a brain region of interest. They have been developed from herpes simplex virus 1 (HSV-1) strain H129 (H129), and have been successfully applied to map diverse neural circuits. Initially, the anterograde polysynaptic tracer H129-G4 was used by many groups. We then developed the first monosynaptic tracer, H129-dTK-tdT, which was highly successful, yet improvements are needed. Now, by inserting another tdTomato expression cassette into the H129-dTK-tdT genome, we have created H129-dTK-T2, an updated version of H129-dTK-tdT that has improved labeling intensity. To help scientists produce and apply our H129-derived viral tracers, here we provide the protocol describing our detailed and standardized procedures. Commonly-encountered technical problems and their solutions are also discussed in detail. Broadly, the dissemination of this protocol will greatly support scientists to apply these viral tracers on a large scale.


Assuntos
Herpesvirus Humano 1 , Encéfalo , Neurônios
10.
Mol Neurodegener ; 12(1): 38, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28499404

RESUMO

BACKGROUND: Herpes simplex virus type 1 strain 129 (H129) has represented a promising anterograde neuronal circuit tracing tool, which complements the existing retrograde tracers. However, the current H129 derived tracers are multisynaptic, neither bright enough to label the details of neurons nor capable of determining direct projection targets as monosynaptic tracer. METHODS: Based on the bacterial artificial chromosome of H129, we have generated a serial of recombinant viruses for neuronal circuit tracing. Among them, H129-G4 was obtained by inserting binary tandemly connected GFP cassettes into the H129 genome, and H129-ΔTK-tdT was obtained by deleting the thymidine kinase (TK) gene and adding tdTomato coding gene to the H129 genome. Then the obtained viral tracers were tested in vitro and in vivo for the tracing capacity. RESULTS: H129-G4 is capable of transmitting through multiple synapses, labeling the neurons by green florescent protein, and visualizing the morphological details of the labeled neurons. H129-ΔTK-tdT neither replicates nor spreads in neurons alone, but transmits to and labels the postsynaptic neurons with tdTomato in the presence of complementary expressed TK from a helper virus. H129-ΔTK-tdT is also capable to map the direct projectome of the specific neuron type in the given brain regions in Cre transgenic mice. In the tested brain regions where circuits are well known, the H129-ΔTK-tdT tracing patterns are consistent with the previous results. CONCLUSIONS: With the assistance of the helper virus complimentarily expressing TK, H129-ΔTK-tdT replicates in the initially infected neuron, transmits anterogradely through one synapse, and labeled the postsynaptic neurons with tdTomato. The H129-ΔTK-tdT anterograde monosynaptic tracing system offers a useful tool for mapping the direct output in neuronal circuitry. H129-G4 is an anterograde multisynaptic tracer with a labeling signal strong enough to display the details of neuron morphology.


Assuntos
Corantes Fluorescentes , Proteínas de Fluorescência Verde , Vias Neurais/citologia , Neurônios/citologia , Coloração e Rotulagem/métodos , Animais , Herpesvirus Humano 1 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
11.
J Virol ; 91(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28356523

RESUMO

Although a varicella-zoster virus (VZV) vaccine has been used for many years, the neuropathy caused by VZV infection is still a major health concern. Open reading frame 7 (ORF7) of VZV has been recognized as a neurotropic gene in vivo, but its neurovirulent role remains unclear. In the present study, we investigated the effect of ORF7 deletion on VZV replication cycle at virus entry, genome replication, gene expression, capsid assembly and cytoplasmic envelopment, and transcellular transmission in differentiated neural progenitor cells (dNPCs) and neuroblastoma SH-SY5Y (dSY5Y) cells. Our results demonstrate that the ORF7 protein is a component of the tegument layer of VZV virions. Deleting ORF7 did not affect viral entry, viral genome replication, or the expression of typical viral genes but clearly impacted cytoplasmic envelopment of VZV capsids, resulting in a dramatic increase of envelope-defective particles and a decrease in intact virions. The defect was more severe in differentiated neuronal cells of dNPCs and dSY5Y. ORF7 deletion also impaired transmission of ORF7-deficient virus among the neuronal cells. These results indicate that ORF7 is required for cytoplasmic envelopment of VZV capsids, virus transmission among neuronal cells, and probably the neuropathy induced by VZV infection.IMPORTANCE The neurological damage caused by varicella-zoster virus (VZV) reactivation is commonly manifested as clinical problems. Thus, identifying viral neurovirulent genes and characterizing their functions are important for relieving VZV related neurological complications. ORF7 has been previously identified as a potential neurotropic gene, but its involvement in VZV replication is unclear. In this study, we found that ORF7 is required for VZV cytoplasmic envelopment in differentiated neuronal cells, and the envelopment deficiency caused by ORF7 deletion results in poor dissemination of VZV among neuronal cells. These findings imply that ORF7 plays a role in neuropathy, highlighting a potential strategy to develop a neurovirulence-attenuated vaccine against chickenpox and herpes zoster and providing a new target for intervention of neuropathy induced by VZV.


Assuntos
Herpesvirus Humano 3/fisiologia , Neurônios/fisiologia , Neurônios/virologia , Proteínas do Envelope Viral/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Capsídeo/metabolismo , Diferenciação Celular , Linhagem Celular , Citoplasma/virologia , Deleção de Genes , Genoma Viral , Herpes Zoster/virologia , Herpesvirus Humano 3/genética , Humanos , Neuroblastoma , Proteínas do Envelope Viral/genética , Vírion , Internalização do Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...