Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37610688

RESUMO

OBJECTIVE: Cardiopulmonary bypass (CPB) is a requisite technique for thoracotomy in advanced cardiovascular surgery. However, the consequent myocardial ischemia-reperfusion injury (MIRI) is the primary culprit behind cardiac dysfunction and fatal consequences post-operation. Prior research has posited that myocardial insulin resistance (IR) plays a vital role in exacerbating the progression of MIRI. Nonetheless, the exact mechanisms underlying this phenomenon remain obscure. METHODS: We constructed pyruvate dehydrogenase E1 α subunit (PDHA1) interference and overexpression rats and used ascending aorta occlusion in an in vivo model of CPB-MIRI. We devised an in vivo model of CPB-MIRI by constructing rat models with both pyruvate dehydrogenase E1α subunit (PDHA1) interference and overexpression through ascending aorta occlusion. We analyzed myocardial glucose metabolism and the degree of myocardial injury using functional monitoring, biochemical assays, and histological analysis. RESULTS: We discovered a clear downregulation of glucose transporter 4 (GLUT4) protein content expression in the CPB I/R model. In particular, cardiac-specific PDHA1 interference resulted in exacerbated cardiac dysfunction, significantly increased myocardial infarction area, more pronounced myocardial edema, and markedly increased cardiomyocyte apoptosis. Notably, the opposite effect was observed with PDHA1 overexpression, leading to a mitigated cardiac dysfunction and decreased incidence of myocardial infarction post-global ischemia. Mechanistically, PDHA1 plays a crucial role in regulating the protein content expression of GLUT4 on cardiomyocytes, thereby controlling the uptake and utilization of myocardial glucose, influencing the development of myocardial insulin resistance, and ultimately modulating MIRI. CONCLUSION: Overall, our study sheds new light on the pivotal role of PDHA1 in glucose metabolism and the development of myocardial insulin resistance. Our findings hold promising therapeutic potential for addressing the deleterious effects of MIRI in patients.

2.
World J Cardiol ; 14(5): 282-296, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35702326

RESUMO

BACKGROUND: Heart failure is a health burden responsible for high morbidity and mortality worldwide, and dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. DCM is a disease of the heart muscle and is characterized by enlargement and dilation of at least one ventricle alongside impaired contractility with left ventricular ejection fraction < 40%. It is also associated with abnormalities in cytoskeletal proteins, mitochondrial ATP transporter, microvasculature, and fibrosis. However, the pathogenesis and potential biomarkers of DCM remain to be investigated. AIM: To investigate the candidate genes and pathways involved in DCM patients. METHODS: Two expression datasets (GSE3585 and GSE5406) were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) between the DCM patients and healthy individuals were identified using the R package "linear models for microarray data." The pathways with common DEGs were analyzed via Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analyses. Moreover, a protein-protein interaction network (PPI) was constructed to identify the hub genes and modules. The MicroRNA Database was applied to predict the microRNAs (miRNAs) targeting the hub genes. Additionally, immune cell infiltration in DCM was analyzed using CIBERSORT. RESULTS: In total, 97 DEGs (47 upregulated and 50 downregulated) were identified. GO analysis showed that the DEGs were mainly enriched in "response to growth factor," "extracellular matrix," and "extracellular matrix structural constituent." KEGG pathway analysis indicated that the DEGs were mainly enriched in "protein digestion and absorption" and "interleukin 17 (IL-17) signaling pathway." The PPI network suggested that collagen type III alpha 1 chain (COL3A1) and COL1A2 contribute to the pathogenesis of DCM. Additionally, visualization of the interactions between miRNAs and the hub genes revealed that hsa-miR-5682 and hsa-miR-4500 interacted with both COL3A1 and COL1A2, and thus these miRNAs might play roles in DCM. Immune cell infiltration analysis revealed that DCM patients had more infiltrated plasma cells and fewer infiltrated B memory cells, T follicular helper cells, and resting dendritic cells. CONCLUSION: COL1A2 and COL3A1 and their targeting miRNAs, hsa-miR-5682 and hsa-miR-4500, may play critical roles in the pathogenesis of DCM, which are closely related to the IL-17 signaling pathway and acute inflammatory response. These results may provide useful clues for the diagnosis and treatment of DCM.

3.
ACS Appl Mater Interfaces ; 13(16): 19301-19311, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856189

RESUMO

Space cooling and heating consume a large proportion of global energy, so passive thermal management materials (i.e., without energy input), especially dual-mode materials including cooling and heating bifunctions, are becoming more and more attractive in many areas. Herein, a function-switchable Janus membrane between cooling and heating consisting of a multilayer structure of polyvinylidene fluoride nanofiber/zinc oxide nanosheet/carbon nanotube/Ag nanowire/polydimethylsiloxane was fabricated for comprehensive thermal management applications. In the cooling mode, the high thermal radiation emissivity (89.2%) and sunlight reflectivity (90.6%) of the Janus membrane resulted in huge temperature drops of 8.2-12.6, 9.0-14.0, and 10.9 °C for a substrate, a closed space, and a semiclosed space, respectively. When switching to the heating mode, temperature rises of 3.8-4.6, 4.0-4.8, and 12.5 °C for the substrate, closed space, and semiclosed space, respectively, were achieved owing to the high thermal radiation reflectivity (89.5%) and sunlight absorptivity (74.1%) of the membrane. Besides, the Janus membrane has outstanding comprehensive properties of the membrane, including infrared camouflaging/disguising, electromagnetic shielding (53.1 dB), solvent tolerance, waterproof properties, and high flexibility, which endow the membrane with promising application prospects.

4.
ACS Appl Mater Interfaces ; 11(12): 12008-12016, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30816693

RESUMO

Conventional polymers are usually processed at a much higher temperature than room temperature, which inevitably leads to huge energy consumption and degradation of the polymers and thus a low recycling ability. Herein, we synthesized a poly( n-butyl acrylate)@polystyrene (PBA@PS) core-shell polymer to prepare a typical baroplastic (processible at room temperature). However, this type of baroplastics always has a low mechanical property. To solve this problem, in this work, we introduced hydrogen bonds into the matrix and successfully reinforced baroplastics for the first time. The hydrogen-bonded interaction was introduced by complexing PBA@PS with poly(acrylic acid) and poly(ethylene oxide). The results show that the reinforced baroplastics possessed notably enhanced mechanical properties and good processability. Their mechanical strength and modulus reached as high as 5.6 (by 73%) and 10 MPa (by 400%), respectively. Moreover, the baroplastics could be remolded many times at room temperature and, at the same time, still showed a higher tensile strength (10.5 MPa, 3.3 times that of the initial PBA@PS, which was never achieved in previous works), which resulted from the reversible hydrogen bonds and reserved orientation of molecular chains. Our work opened a new path to reinforce baroplastics and could widen their applications. Furthermore, not limited to the hydrogen bonds, more sacrificial bonds, such as ionic bonds, host-guest interactions, and metal-ligand coordination bonds, could be used to fabricate high-performance baroplastics.

5.
ACS Appl Mater Interfaces ; 10(48): 41637-41644, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30395431

RESUMO

Personal cooling technologies (PCTs) locally control the temperature of an individual instead of a whole building and are thus energy saving. However, most PCTs still consume energy and are heavy in weight, restricting their application among human beings. To achieve personal thermal comfort and no energy consumption on hot summer days, we designed a bilayer structure fabric with high thermal comfort by increasing the dissipation of human thermal radiation and reducing solar energy absorption simultaneously. The fabric consisted of two layers, including a polyethylene film with nanopores (100-1000 nm in pore size) and a film made of nylon 6 nanofibers (ca. 100 nm in diameter) with beads (ca. 230 nm in diameter), which could increase the visible light reflectance but not affect the infrared wave radiation. Therefore, the designed fabric showed a high heat dissipation power, which was 14.13, 17.93, and 17.93 W/m2 higher than that of the selected traditional textiles of cotton, linen, and odile, respectively, suggesting good cooling capability. Its cooling performance was better than those reported by the previous research works even at a higher ambient temperature. Meanwhile, the moisture penetrability and hygroscopic property results indicated that the wearing comfort of the designed fabric reached the levels of the selected traditional textiles.


Assuntos
Temperatura Corporal , Raios Infravermelhos , Nylons , Polietileno , Têxteis , Humanos
6.
ACS Omega ; 3(11): 15471-15481, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458203

RESUMO

For the first time, the influences of two inevitable processing fields (pressure and flow fields) on the crystallization of a semirigid molecular chain polymer, that is, poly(l-lactic acid) (PLLA), were explored using a homemade pressuring and shearing device. The results reveal that the shear rate facilitated the generation of precursor because it induced oriented segment formation. It was found that the most sensitive shear temperature for the generation of PLLA precursor under 100 MPa was 180 °C. When the shear temperature was higher (e.g., 190 °C), the relaxation of shear-induced oriented segments was too quick to induce the generation of PLLA precursor. Oppositely, at a lower shear temperature (170 °C), the oriented segments were hard to relax within the whole shear rate range (3.1-31.4 s-1). Annealing treatment was infaust to the PLLA precursor formation because it promoted the relaxation of oriented segments. Different from the shear and annealing, pressure played a more complicated role in the formation of PLLA precursor. Pressure decreased the free volume between PLLA molecular chains and meantime increased the supercooling of PLLA melt. In addition, PLLA chains tended to form locally oriented segment bundles to adapt to the pressurized state, which facilitated the formation of PLLA precursor and the following crystallization process. These two factors lowered the movability of PLLA chains and suppressed the relaxation of chain, so shear-induced orientation facilitated PLLA precursor formation under pressure. In that case, pressure and shear flow showed a synergetic promoting effect on the generation of PLLA precursor and the following crystallization process. These meaningful results could be helpful for comprehending the relationship between crystallization conditions and the crystallization behavior of PLLA and thus would provide guidance to fabricating the final products through controlling the crystallization process of PLLA.

7.
Bioinformatics ; 32(20): 3193-3195, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27334475

RESUMO

MOTIVATION: Recovering the gene structures is one of the important goals of genome assembly. In low-quality assemblies, and even some high-quality assemblies, certain gene regions are still incomplete; thus, novel scaffolding approaches are required to complete gene regions. RESULTS: We developed an efficient and fast genome scaffolding method called PEP_scaffolder, using proteins to scaffold genomes. The pipeline aims to recover protein-coding gene structures. We tested the method on human contigs; using human UniProt proteins as guides, the improvement on N50 size was 17% increase with an accuracy of ∼97%. PEP_scaffolder improved the proportion of fully covered proteins among all proteins, which was close to the proportion in the finished genome. The method provided a high accuracy of 91% using orthologs of distant species. Tested on simulated fly contigs, PEP_scaffolder outperformed other scaffolders, with the shortest running time and the highest accuracy. AVAILABILITY AND IMPLEMENTATION: The software is freely available at http://www.fishbrowser.org/software/PEP_scaffolder/ CONTACT: lijt@cafs.ac.cnSupplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Análise de Sequência de DNA , Algoritmos , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Homologia de Sequência , Software
8.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(6): 4580-4581, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26703926

RESUMO

The Siamese fighting fish (Betta splendens) is one of the popular aquarium fish. Serious attentions have been paid to the biodiversity of the fish. The mitochondrial genome of the Siamese fighting fish is reported to be 17 099 bp and includes 37 genes. The gene organization is similar to other fish mitogenomes. The control region is AT-rich and includes three tandem repeats. Phylogenetic analysis reveals that the fish is close to fish in the Macropodus genus. This mitogenome will assist in studying the mitochondrial variations and population structure in this fish and examine the evolutionary relationship among fish in the Osphronemidae family.


Assuntos
Peixes/genética , Genoma Mitocondrial , Animais , Composição de Bases , Evolução Biológica , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/classificação , Fases de Leitura Aberta/genética , Filogenia , RNA Ribossômico/química , RNA Ribossômico/genética , RNA de Transferência/química , RNA de Transferência/genética , Sequências de Repetição em Tandem/genética
9.
Int J Mol Sci ; 16(9): 21310-29, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26370964

RESUMO

Teleosts have more types of chromatophores than other vertebrates and the genetic basis for pigmentation is highly conserved among vertebrates. Therefore, teleosts are important models to study the mechanism of pigmentation. Although functional genes and genetic variations of pigmentation have been studied, the mechanisms of different skin coloration remains poorly understood. The koi strain of common carp has various colors and patterns, making it a good model for studying the genetic basis of pigmentation. We performed RNA-sequencing for red skin and white skin and identified 62 differentially expressed genes (DEGs). Most of them were validated with RT-qPCR. The up-regulated DEGs in red skin were enriched in Kupffer's vesicle development while the up-regulated DEGs in white skin were involved in cytoskeletal protein binding, sarcomere organization and glycogen phosphorylase activity. The distinct enriched activity might be associated with different structures and functions in erythrophores and iridophores. The DNA methylation levels of two selected DEGs inversely correlated with gene expression, indicating the participation of DNA methylation in the coloration. This expression characterization of red-white skin along with the accompanying transcriptome-wide expression data will be a useful resource for further studies of pigment cell biology.


Assuntos
Carpas/genética , Regulação da Expressão Gênica , Pigmentação da Pele/genética , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Ilhas de CpG , Metilação de DNA , Perfilação da Expressão Gênica , Locos de Características Quantitativas , Transcriptoma
10.
Phys Chem Chem Phys ; 17(15): 9780-93, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25772535

RESUMO

By employing two-color visible (VIS)-ultraviolet (UV) laser photoionization and pulsed field ionization-photoelectron (PFI-PE) techniques, we have obtained highly rotationally resolved photoelectron spectra for vanadium monocarbide cations (VC(+)). The state-to-state VIS-UV-PFI-PE spectra thus obtained allow unambiguous assignments for the photoionization rotational transitions, resulting in a highly precise value for the adiabatic ionization energy (IE) of vanadium monocarbide (VC), IE(VC) = 57512.0 ± 0.8 cm(-1) (7.13058 ± 0.00010 eV), which is defined as the energy of the VC(+)(X(3)Δ1; v(+) = 0; J(+) = 1) ← VC(X(2)Δ3/2; v'' = 0; J'' = 3/2) photoionization transition. The spectroscopic constants for VC(+)(X(3)Δ1) determined in the present study include the harmonic vibrational frequency ωe(+) = 896.4 ± 0.8 cm(-1), the anharmonicity constant ωe(+)xe(+) = 5.7 ± 0.8 cm(-1), the rotational constants Be(+) = 0.6338 ± 0.0025 cm(-1) and αe(+) = 0.0033 ± 0.0007 cm(-1), the equilibrium bond length re(+) = 1.6549 ± 0.0003 Å, and the spin-orbit coupling constant A = 75.2 ± 0.8 cm(-1) for VC(+)(X(3)Δ1,2,3). These highly precise energetic and spectroscopic data are used to benchmark state-of-the-art CCSDTQ/CBS calculations. In general, good agreement is found between the theoretical predictions and experimental results. The theoretical calculations yield the values, IE(VC) = 7.126 eV; the 0 K bond dissociation energies: D0(V-C) = 4.023 eV and D0(V(+)-C) = 3.663 eV; and heats of formation: ΔH°(f0)(VC) = 835.2, ΔH°(f298)(VC) = 840.4, ΔH°(f0)(VC(+)) = 1522.8, and ΔH°(f298)(VC(+)) = 1528.0 kJ mol(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...