Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 4456, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932120

RESUMO

With advancement of technology, requirements for light-emitting devices are increasing. Various types of packaging technologies have been suggested to improve the performance of light-emitting diode (LED). Among them, phosphor in glass (PiG) is attracting attention due to its manufactural facility and easily tunable characteristics. As PiG draws increasing attention, research on glass materials is also being actively conducted. However, studies about glass in the field of phosphor are mainly conducted on fabrication. Only a few studies about recycling have been reported. Thus, the objective of this study was to recycle waste glass discarded in other fields due to breakage and failure and use it to fabricate phosphor in glass. Cylindrical waste glass was pulverized into powder with an average size of 12 µm, mixed with a phosphor and sintered to be reborn as a phosphor in glass to broaden the recycling route for waste glass.

3.
RSC Adv ; 13(3): 1551-1557, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688061

RESUMO

Demand for flexible transparent sensors for futuristic cars is increasing since such sensors can enhance the freedom of design and aesthetic value in the interior of cars. Herein, we propose a unique roll-to-roll UV lamination process that can expedite large-scale Ag nanowire (AgNW) transfer for a flexible capacitive sensor, using a photocurable resin composed of an epoxy acrylate oligomer, a reactive monomer (1,6-hexanediol diacrylate), and a photoinitiator (1-hydroxycyclohexyl phenyl ketone). The acryl groups in the resin were rapidly crosslinked by UV irradiation, which facilitated the AgNWs transfer from a PET to a PC substrate with the speed of 1050 cm2 min-1 and enhanced the adhesion between the AgNWs and the PC substrate. Systematic experiments were performed to determine optimal fabrication parameters with respect to the UV dose, lamination pressure, and laser dicing conditions. At the optimal fabrication conditions, the sheet resistance of AgNWs on a PC film (PC-AgNW) was as small as 36.79 Ω sq-1, which was only 3.17% deviation from that on a PET film (PET-AgNW). Furthermore, the optical transmittance of the PC-AgNW exceeded 88% over the visible range, and it was greater than that of the PET-AgNW. Notably, the sheet resistance of the PC-AgNW was almost constant after 50 taping and peeling cycles, indicating remarkable adhesion to the substrate. Furthermore, a capacitive touch sensor was fabricated using the PC-AgNW, and its switching signals were presented with and without finger touch.

4.
Micromachines (Basel) ; 13(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36422446

RESUMO

The aim of this study was to investigate properties of ceramic phosphors fabricated using nano Lu3Al5O12:Ce3+ phosphors produced with a sol-gel-combustion method. These nano Lu3Al5O12:Ce3+ phosphors had a size of about 200 nm, leading to high density when fabricated as a ceramic phosphor. We manufactured ceramic phosphors through vacuum sintering. Alumina powder was added to improve properties. We mounted the manufactured ceramic phosphor in a high-power laser beam projector and drove it to determine its optical performance. Ceramic phosphor manufactured according to our route will have a significant impact on the laser-driven lighting industry.

5.
Sci Rep ; 12(1): 20477, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443320

RESUMO

This study investigates the characteristics of a ceramic phosphor (CP) for the converter of a high-power laser diode-based automobile headlamp synthesized by high-frequency induction heated press (HFP) sintering. The CP prepared by an HFP method exhibits remarkable optical properties that are comparable to spark plasma sintering. The effects of post-treatment process for controlling residual pores, as well as sintering temperature, sintering pressure and heating rate for optimization of the HFP sintering method, were studied. The HFP sintering process can be widely used in ceramics and lighting fields because it is designed relatively low cost compared to other techniques and exhibits excellent productivity.

6.
Micromachines (Basel) ; 11(9)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967186

RESUMO

We report an anti-reflective cover glass for Cu(In,Ga)Se2 (CIGS) thin film solar cells. Subwavelength structures (SWSs) were fabricated on top of a cover glass using one-step self-masked etching. The etching method resulted in dense whiskers with high aspect ratio. The produced structure exhibited excellent anti-reflective properties over a broad wavelength range, from the ultraviolet to the near infrared. Compared to a flat-surface glass, the average transmittance of the glass integrated with the SWSs improved from 92.4% to 95.2%. When the cover glass integrated with the SWSs was mounted onto the top of a CIGS device, the short-circuit current and the efficiency of the solar cell were enhanced by 4.38 and 6%, respectively, compared with a CIGS solar cell without cover glass.

7.
J Nanosci Nanotechnol ; 20(12): 7724-7729, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32711649

RESUMO

Despite the fact that stability is a critical issue affecting halide perovskite after the materials have been developed, these materials continue to be studied due to their outstanding optoelectronic characteristics such as narrow emission band width, high PLQY. Many methods are suggested and improved, but the limitations for the display and lighting applications are still remaining. Here, we propose the fabrication of stable cesium lead tri-halide (CsPbX3; X= Cl, Br, I) perovskite films using photocurable polyurethane material, norland optical adhesive 63 (NOA 63), to generate white LEDs by placing films on the InGaN 450 nm blue chip. Comparing with the conventional perovskites, fabricated films well maintained the luminescence properties such as full widths at half maximum (FWHM) of 18 nm and 31 nm for green and red films, respectively. For the stability issue, pristine perovskite without encapsulation is decomposed immediately at high humidity and temperature, but NOA 63 encapsulated perovskite maintained a PL emission property of 60% after four hours in artificial atmosphere. The CIE color triangle reached ~119% of the NTSC standard, exhibiting high color purity. From the results, we confirm that the NOA 63 encapsulated halide perovskites are beneficial when applied in optoelectronic applications due to their improved stability and maintained characteristics.

8.
Nanoscale ; 12(2): 558-562, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31777889

RESUMO

To overcome the parasitic absorption of ultraviolet (UV) light in the transparent conductive oxide (TCO) layer of flexible Cu(In,Ga)Se2 (CIGS) thin film solar cells, a CsPbBr3 perovskite nanocrystal based luminescent down-shifting (LDS) layer was integrated on CIGS solar cells fabricated on a stainless steel foil. The CsPbBr3 perovskite nanocrystal absorbs solar irradiation at wavelengths shorter than 520 nm and emits photons at a wavelength of 532 nm. These down-shifted photons pass the TCO layer without parasitic absorption and are absorbed in the CIGS absorber layer where they generate photocurrent. By minimizing the parasitic absorption in the TCO layer, the external quantum efficiency (EQE) of the CIGS solar cell with the CsPbBr3 perovskite nanocrystal layer is highly improved in the UV wavelength range between 300 and 390 nm. Additionally, in the wavelength range between 500 and 1100 nm, the EQE is improved since the surface reflectance of the CIGS device with the CsPbBr3 perovskite LDS layer was reduced. This is because the CsPbBr3 perovskite nanocrystal layer, which has an effective refractive index of 1.82 at a wavelength of 800 nm, reduces the large refractive index mismatch between air (nair = 1.00) and the TCO layer (nZnO = 1.96 at a wavelength of 800 nm). Both the short circuit current density and power conversion efficiency of the flexible CIGS solar cell integrated with the CsPbBr3 perovskite are improved by 4.5% compared with the conventional CIGS solar cell without the CsPbBr3 perovskite LDS layer.

9.
Sci Rep ; 8(1): 2009, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386566

RESUMO

We report for the first time the mass production of Cs4PbBr6 perovskite microcrystal with a Couette-Taylor flow reactor in order to enhance the efficiency of the synthesis reaction. We obtained a pure Cs4PbBr6 perovskite solid within 3 hrs that then realized a high photoluminescence quantum yield (PLQY) of 46%. Furthermore, the Cs4PbBr6 perovskite microcrystal is applied with red emitting K2SiF6 phosphor on a blue-emitting InGaN chip, achieving a high-performance luminescence characteristics of 9.79 lm/W, external quantum efficiency (EQE) of 2.9%, and correlated color temperature (CCT) of 2976 K; therefore, this perovskite is expected to be a promising candidate material for applications in optoelectronic devices.

10.
Sci Rep ; 7(1): 16414, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29180740

RESUMO

In this work, we introduce a novel and facile method of exfoliating large-area, single-layer graphene oxide using a shearing stress. The shearing stress reactor consists of two concentric cylinders, where the inner cylinder rotates at controlled speed while the outer cylinder is kept stationary. We found that the formation of Taylor vortex flow with shearing stress can effectively exfoliate the graphite oxide, resulting in large-area single- or few-layer graphene oxide (GO) platelets with high yields (>90%) within 60 min of reaction time. Moreover, the lateral size of exfoliated GO sheets was readily tunable by simply controlling the rotational speed of the reactor and reaction time. Our approach for high-efficiency exfoliation of GO with controlled dimension may find its utility in numerous industrial applications including energy storage, conducting composite, electronic device, and supporting frameworks of catalyst.

11.
J Environ Manage ; 201: 286-293, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28683367

RESUMO

The PS@+rGO@GO@Fe3O4 (PG-Fe3O4) hybrid composites for Arsenic removal were successfully fabricated and well dispersed using layer-by-layer assembly and a hydrothermal method. The PG-Fe3O4 hybrid composites were composed of uniformly coated Fe3O4 nanoparticles on graphene oxide layers with water flow space between 3D structures providing many contact area and adsorption sites for Arsenic adsorption. The PG-Fe3O4 hybrid composite has large surface adsorption sites and exhibits high adsorption capacities of 104 mg/g for As (III) and 68 mg/g for As (V) at 25 °C and pH 7 comparison with pure Fe3O4 and P-Fe3O4 samples.


Assuntos
Arsênio , Adsorção , Grafite , Nanopartículas , Óxidos , Purificação da Água
12.
Bioresour Technol ; 240: 77-83, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28314667

RESUMO

A continuous flow microbial reverse-electrodialysis electrolysis cell (MREC) was operated under non-buffered substrate with various flow rates of catholyte effluent into anode chamber to investigate the effects on the hydrogen gas production. Adding the catholyte effluent to the anolyte influent resulted in increased salt concentration in the anolyte influent. The increasing anolyte influent salt concentration to 0.23M resulted in improved hydrogen gas production, Coulombic recovery, yield, and hydrogen production rate to 25±1.4mL, 83±5%, 1.49±0.15mol-H2/mole-COD, 0.91±0.03m3-H2/m3-Van/day, respectively. These improvements were attributed to the neutral pH rather than increase in anolyte conductivity as there was no significant improvement in the reactor performance when the NaCl was directly added to the reactor. These results show that addition of catholyte effluent into the anode chamber improved the MREC performance.


Assuntos
Fontes de Energia Bioelétrica , Eletrodos , Eletrólise , Hidrogênio , Concentração de Íons de Hidrogênio , Cloreto de Sódio
13.
ACS Nano ; 11(3): 3311-3319, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28278375

RESUMO

Excellent color purity with a tunable band gap renders organic-inorganic halide perovskite highly capable of performing as light-emitting diodes (LEDs). Perovskite nanocrystals show a photoluminescence quantum yield exceeding 90%, which, however, decreases to lower than 20% upon formation of a thin film. The limited photoluminescence quantum yield of a perovskite thin film has been a formidable obstacle for development of highly efficient perovskite LEDs. Here, we report a method for highly luminescent MAPbBr3 (MA = CH3NH3) nanocrystals formed in situ in a thin film based on nonstoichiometric adduct and solvent-vacuum drying approaches. Excess MABr with respect to PbBr2 in precursor solution plays a critical role in inhibiting crystal growth of MAPbBr3, thereby forming nanocrystals and creating type I band alignment with core MAPbBr3 by embedding MAPbBr3 nanocrystals in the unreacted wider band gap MABr. A solvent-vacuum drying process was developed to preserve nanocrystals in the film, which realizes a fast photoluminescence lifetime of 3.9 ns along with negligible trapping processes. Based on a highly luminescent nanocrystalline MAPbBr3 thin film, a highly efficient green LED with a maximum external quantum efficiency of 8.21% and a current efficiency of 34.46 cd/A was demonstrated.

14.
Nanoscale ; 8(47): 19523-19526, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27869253

RESUMO

We report highly efficient ethyl cellulose with CsPbBr3 perovskite QD films for white light generation in LED application. Ethyl cellulose with CsPbBr3 quantum dots is applied with Sr2Si5N8 : Eu2+ red phosphor on an InGaN blue chip, achieving a highly efficient luminous efficacy of 67.93 lm W-1 under 20 mA current.

15.
Sci Rep ; 6: 31206, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27502730

RESUMO

We report on Y3Al5O12: Ce(3+) ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce(3+) concentration. The luminous properties of the Y3Al5O12: Ce(3+) CPP nano phosphor are improved when compared to the Y3Al5O12: Ce(3+) CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce(3+) CPP with an optimal Ce(3+) content of 0.5 mol % shows 2733 lm/mm(2) value under high power blue radiant flux density of 19.1 W/mm(2). The results indicate that Y3Al5O12: Ce(3+) CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications.

16.
Bioresour Technol ; 210: 56-60, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26888336

RESUMO

The aim of this work was to use substrate without buffer solution in a microbial reverse-electrodialysis electrolysis cell (MREC) for hydrogen production under continuous flow condition (10 cell pairs of RED stacks, HRT=5, 7.5, and 15h). Decreasing in the HRT (increasing in the organic matter) made cell current stable and increased. Hydrogen gas was produced at a rate of 0.61m(3)-H2/m(3)-Van/d in H-MREC, with a COD removal efficiency of 81% (1.55g/L/d) and a Coulombic efficiency of 41%. This MREC system without buffer solution could successfully produce hydrogen gas at a consistent rate.


Assuntos
Fontes de Energia Bioelétrica , Eletrólise/instrumentação , Eletrólise/métodos , Hidrogênio/metabolismo , Soluções Tampão , Eletricidade , Eletrodos , Soluções , Fatores de Tempo
17.
ACS Appl Mater Interfaces ; 7(42): 23521-6, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26445167

RESUMO

We report on reduced graphene oxide (rGO)/mesoporous (mp)-TiO2 nanocomposite based mesostructured perovskite solar cells that show an improved electron transport property owing to the reduced interfacial resistance. The amount of rGO added to the TiO2 nanoparticles electron transport layer was optimized, and their impacts on film resistivity, electron diffusion, recombination time, and photovoltaic performance were investigated. The rGO/mp-TiO2 nanocomposite film reduces interfacial resistance when compared to the mp-TiO2 film, and hence, it improves charge collection efficiency. This effect significantly increases the short circuit current density and open circuit voltage. The rGO/mp-TiO2 nanocomposite film with an optimal rGO content of 0.4 vol % shows 18% higher photon conversion efficiency compared with the TiO2 nanoparticles based perovskite solar cells.

18.
J Nanosci Nanotechnol ; 9(12): 7350-3, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19908786

RESUMO

The Ca(1-x)Mg(x)Al12O19:Mn4+ compounds were prepared by liquid phase precursor (LPP) methods for use in white light emitting diodes (LEDs) based on nano red phosphor. The effect of adding Mg element on the relative emission characteristics of Ca(1-x)Mg(x)Al12O19:Mn4+ is discussed in terms of the charge compensation effect. The LPP synthesis, the relative emission intensity of Ca(1-x)Mg(x)Al12O19:Mn4+ containing ratio of 0.05 MgO was approximately 70% higher than that of the LPP synthesized Ca(1-x)Mg(x)Al12O19:Mn4+ red phosphor. These results indicate that the use of an appropriate LPP synthesis improve excellence the luminescent efficiency, particularly for the samples prepared with the optimized firing temperature of 1450 degrees C for 1 hour.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...