Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 213: 115612, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209858

RESUMO

Hepatocellular carcinoma (HCC) is a common aggressive, malignant tumor with limited treatment options. Currently, immunotherapies have low success rates in the treatment of HCC. Annexin A1 (ANXA1) is a protein related to inflammation, immunity and tumorigenesis. However, the role of ANXA1 in liver tumorigenesis remains unknown. Therefore, we sought to explore the feasibility of ANXA1 as a therapeutic target for HCC. Here, we analyzed ANXA1 expression and localization by HCC microarray and immunofluorescence experiments. Using an in vitro culture system, monocytic cell lines and primary macrophages were employed to investigate the biological functions of cocultured HCC cells and cocultured T cells. In vivo, Ac2-26, human recombinant ANXA1 (hrANXA1), and cell depletion (macrophages or CD8 + T cells) experiments were further conducted to investigate the role of ANXA1 in the tumor microenvironment (TME). We found that ANXA1 was overexpressed in mesenchymal cells, especially macrophages, in human liver cancer. Moreover, the expression of ANXA1 in mesenchymal cells was positively correlated with programmed death-ligand 1 expression. Knockdown of ANXA1 expression inhibited HCC cell proliferation and migration by increasing the M1/M2 macrophage ratio and promoting T-cell activation. hrANXA1 promoted malignant growth and metastasis in mice by increasing the infiltration and M2 polarization of tumor-associated macrophages (TAMs), generating an immunosuppressive TME and suppressing the antitumor CD8 + T-cell response. Together, our findings reveal that ANXA1 may be an independent prognostic factor for HCC and demonstrate the clinical translational significance of ANXA1 for tumor immunotherapy in HCC.


Assuntos
Anexina A1 , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Anexina A1/genética , Anexina A1/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Microambiente Tumoral , Macrófagos Associados a Tumor/metabolismo
2.
Aging (Albany NY) ; 15(5): 1496-1523, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36881382

RESUMO

Hepatocellular Carcinoma (HCC) is a type of liver cancer which is characterized by inflammation-associated tumor. The unique characteristics of tumor immune microenvironment in HCC contribute to hepatocarcinogenesis. It was also clarified that aberrant fatty acid metabolism (FAM) might accelerate tumor growth and metastasis of HCC. In this study, we aimed to identify fatty acid metabolism-related clusters and establish a novel prognostic risk model in HCC. Gene expression and corresponding clinical data were searched from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) portal. From the TCGA database, by unsupervised clustering method, we determined three FAM clusters and two gene clusters with distinct clinicopathological and immune characteristics. Based on 79 prognostic genes identified from 190 differentially expressed genes (DEGs) among three FAM clusters, five prognostic DEGs (CCDC112, TRNP1, CFL1, CYB5D2, and SLC22A1) were determined to construct risk model by least absolute shrinkage and selection operator (LASSO) and multivariate cox regression analysis. Furthermore, the ICGC dataset was used to validate the model. In conclusion, the prognostic risk model constructed in this study exhibited excellent indicator performance of overall survival, clinical feature, and immune cell infiltration, which has the potential to be an effective biomarker for HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Carcinogênese , Análise por Conglomerados , Ácidos Graxos , Prognóstico , Microambiente Tumoral/genética , Citocromos b5
3.
Biomedicines ; 11(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979675

RESUMO

For hepatocellular carcinoma (HCC) patients, we attempted to establish a new oxidative stress (OS)-related prognostic model for predicting prognosis, exploring immune microenvironment, and predicting the immunotherapy response. Significantly differently expressed oxidative stress-related genes (DEOSGs) between normal and HCC samples from the Cancer Genome Atlas (TCGA) were screened, and then based on weighted gene coexpression network analysis (WGCNA), HCC-related hub genes were discovered. Based on the least absolute shrinkage and selection operator (LASSO) and cox regression analysis, a prognostic model was developed. We validated the prognostic model's predictive power using an external validation cohort: the International Cancer Genome Consortium (ICGC).Then a nomogram was determined. Furthermore, we also examined the relationship of the risk model and clinical characteristics as well as immune microenvironment. 434 DEOSGs, comprising 62 downregulated and 372 upregulated genes (p < 0.05 and |log2FC| ≥ 1), and 257 HCC-related hub genes were recognized in HCC. Afterward, we built a five-DEOSG (LOX, CYP2C9, EIF2B4, EZH2, and SRXN1) prognostic risk model. Using the nomogram, the risk model was shown to have good prognostic value. Compared to the low risk group, HCC patients with high risk had poorer outcomes, worse pathological grades, and advanced tumor stages (p < 0.05). There were significant increases in LOX, EIF2B4, EZH2, and SRXN1 expression in HCC samples, while CYP2C9 expression was decreased. Finally, Real-time PCR (RT-qPCR) confirmed the mRNA expressions of five genes (CYP2C9, EIF2B4, EZH2, SRXN1, LOX) in HCC cell lines. Our study constructed a prognostic OS-related model with strong predictive power and potential as an immunosuppressive biomarker for HCC leading to improving prediction and providing new insights for HCC immunotherapy.

4.
Cancers (Basel) ; 14(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36230524

RESUMO

Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death worldwide. AHSA1 as a chaperone of HSP90 promotes the maturation, stability, and degradation of related cancer-promoting proteins. However, the regulatory mechanism and biological function of AHSA1 in HCC are largely unknown. Actually, we found that AHSA1 was significantly upregulated in HCC tissues and cell lines and was notably correlated with the poor clinical characteristics and prognosis of HCC patients in this study. Furthermore, both in vitro and in vivo, gain- and loss-of-function studies demonstrated that AHSA1 promoted the proliferation, invasion, metastasis, and epithelial-mesenchymal transition (EMT) of HCC. Moreover, the mechanistic study indicated that AHSA1 recruited ERK1/2 and promoted the phosphorylation and inactivation of CALD1, while ERK1/2 phosphorylation inhibitor SCH772984 reversed the role of AHSA1 in the proliferation and EMT of HCC. Furthermore, we demonstrated that the knockdown of CALD1 reversed the inhibition of proliferation and EMT by knocking AHSA1 in HCC. We also illustrated a new molecular mechanism associated with AHSA1 in HCC that was independent of HSP90 and MEK1/2. In summary, AHSA1 may play an oncogenic role in HCC by regulating ERK/CALD1 axis and may serve as a novel therapeutic target for HCC.

5.
J Transl Med ; 20(1): 157, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35382859

RESUMO

BACKGROUND: JAK1 and JAK2 have been implicated in fibrosis and cancer as a fibroblast-related marker; however, their role in liver fibrosis has not been elucidated. Here, we aim to determine the effect and underlying mechanism of JAK1/2 inhibition on liver fibrosis and hepatic stellate cells (HSCs) and further explore the therapeutic efficacy of Ruxolitinib, a JAK1/2 selective inhibitor, on preventing and reversing liver fibrosis in mice. METHODS: Immunohistochemistry staining of JAK1 and JAK2 were performed on liver tissue in mice with hepatic fibrosis and human liver tissue microarray of liver cirrhosis and liver cancer. LX-2 cells treated with specific siRNA of JAK1 and JAK2 were used to analysis activation, proliferation and migration of HSCs regulated by JAK1/2. The effects of Ruxolitinib (JAK1/2 inhibitor) on liver fibrosis were studied in LX-2 cells and two progressive and reversible fibrosis animal models (carbon tetrachloride (CCl4), Thioacetamide (TAA)). RESULTS: We found that JAK1/2 expression was positively correlated with the progression of HCC in humans and the levels of liver fibrosis in mice. Silencing of JAK1/2 down-regulated their downstream signaling and inhibited proliferation, migration, and activation of HSCs in vitro, while Ruxolitinib had similar effects on HSCs. Importantly, Ruxolitinib significantly attenuated fibrosis progression, improved cell damage, and accelerated fibrosis reversal in the liver of mice treated with CCl4 or TAA. CONCLUSIONS: JAK1/2 regulates the function of HSCs and plays an essential role in liver fibrosis and HCC development. Its inhibitor, Ruxolitinib, may be an effective drug for preventing and treating liver fibrosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nitrilas , Pirazóis , Pirimidinas , Animais , Tetracloreto de Carbono , Carcinoma Hepatocelular/patologia , Fibrose , Células Estreladas do Fígado , Humanos , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Camundongos , Nitrilas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia
6.
Can J Gastroenterol Hepatol ; 2021: 9990338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557456

RESUMO

Long noncoding RNAs (lncRNAs) have been substantially reported to have critical roles in regulating tumorigenesis in recent years. However, the expression pattern and biological function of SNHG17 in hepatocellular carcinoma (HCC) remain unclear. Bioinformatics analysis and qRT-PCR were performed to detect the expression pattern of SNHG17 in HCC tissues, adjacent nontumorous tissues, and cell lines. The effect of SNHG17 on proliferation, migration, and apoptosis of HCC was investigated by knockdown and overexpressing SNHG17 in HCC cell lines. RNA sequencing was utilized to explore the underlying mechanism. Utilizing publicly available TCGA-LIHC, GSE102079 HCC datasets, and qRT-PCR, we found SNHG17 was significantly upregulated in HCC tissues and cell lines and was notably associated with larger tumor size, poorly differentiation, presence of vascular invasion, and advanced TNM stage. Furthermore, gain- and loss-of-function studies demonstrated that SNHG17 promoted cell proliferation and migration and inhibited apoptosis of HCC. By employing RNA sequencing, we found knockdown of SNHG17 caused 1037 differentially expressed genes, highly enriched in several pathways, including metabolic, PI3K-Akt, cell adhesion, regulation of cell proliferation, and apoptotic pathway; among them, 92 were overlapped with SNHG17-related genes in the TCGA-LIHC dataset. Furthermore, ERH, TBCA, TDO2, and PDK4 were successfully validated and found significantly dysregulated in HCC tissues. Moreover, HCC patients with higher SNHG17 expression had a relatively poor overall survival and disease-free survival, and ERH and PDK4 also played a marked role in the prognosis of HCC. Broadly, our findings illustrate that SNHG17 acts as a noncoding oncogene in HCC progression, suggesting its potential value as a novel target for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Carcinoma Hepatocelular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , RNA Longo não Codificante/genética
7.
Mol Ther Nucleic Acids ; 25: 328-341, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34484860

RESUMO

Rapid tumor progression, metastasis, and diagnosis in advanced stages of disease are the main reasons for the short survival time and high mortality rate of patients with hepatocellular carcinoma (HCC). Ephrin A4 (EFNA4), the ligand of the EPH family, participates in the development of blood vessels and epithelium by regulating cell migration and rejection. In our study, based on bioinformatics analyses, we found that EFNA4 was highly expressed and led to poor prognosis in patients with HCC. We demonstrated that overexpression of EFNA4 significantly promoted HCC cell proliferation and migration in vivo or in vitro. In addition, knockdown of EFNA4 inhibited the proliferation and migration of HCC cells. Furthermore, EFNA4 was found to directly interact with EPHA2 and promote its phosphorylation at Ser897, followed by recruitment of phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) and activation of the glycogen synthase kinase-3beta (GSK3ß)/ß-catenin signaling pathway. Moreover, overexpression of ß-catenin further promoted the expression of PIK3R2, which formed a positive feedback loop. The results revealed that abnormal expression of EFNA4 is the main switch of the PIK3R2/GSK3ß/ß-catenin loop that influenced the proliferation and migration of HCC cells and suggest that EFNA4 is a potential prognostic marker and a prospective therapeutic target in patients with HCC.

8.
Cell Death Dis ; 11(8): 709, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32848131

RESUMO

EphA2 is an important oncogenic protein and emerging drug target, but the oncogenic role and mechanism of ligand-independent phosphorylation of EphA2 at tyrosine 772 (pY772-EphA2) is unclear. In this study, we established nasopharyngeal carcinoma (NPC) cell lines with stable expression of exogenous EphA2 and EphA2-Y772A (phosphorylation inactivation) using endogenous EphA2-knockdown cells, and observed that pY772A EphA2 was responsible for EphA2-promoting NPC cell proliferation and anchorage-independent and in vivo growth in mice. Mechanistically, EphA2-Y772A mediated EphA2-activating Shp2/Erk-1/2 signaling pathway in the NPC cells, and Gab1 (Grb2-associated binder 1) and Grb2 (growth factor receptor-bound protein 2) were involved in pY772-EphA2 activating this signaling pathway. Our results further showed that Shp2/Erk-1/2 signaling mediated pY772-EphA2-promoting NPC cell proliferation and anchorage-independent growth. Moreover, we observed that EphA2 tyrosine kinase inhibitor ALW-II-41-27 inhibited pY772-EphA2 and EphA2-Y772A decreased the inhibitory effect of ALW-II-41-27 on NPC cell proliferation. Collectively, our results demonstrate that pY772-EphA2 is responsible for EphA2-dependent NPC cell growth in vitro and in vivo by activating Shp2/Erk-1/2 signaling pathway, and is a pharmacologic target of ALW-II-41-27, suggesting that pY772-EphA2 can serve as a therapeutic target in NPC and perhaps in other cancers.


Assuntos
Efrina-A2/genética , Carcinoma Nasofaríngeo/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , China , Efrina-A2/metabolismo , Proteína Adaptadora GRB2/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Nus , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Receptor EphA2/genética , Receptor EphA2/metabolismo , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Cancer ; 10(11): 2578-2587, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258764

RESUMO

Immune checkpoint therapies for cancer, like the anti-programmed cell death 1 (PD-1) agent pembrolizumab, have gained considerable attention. However, the use of immune checkpoint inhibitors in the context of adoptive immunotherapy is poorly characterized. We investigated the therapeutic efficacy of dendritic cell-stimulated CIK (DC-CIK) cells pretreated with pembrolizumab against hepatocellular carcinoma (HCC) in cytotoxicity assay in vitro and in a nude mouse xenograft model. We used time-lapse imaging to investigate tumor killing. We also performed a survival analysis based on lymphocyte subpopulation-specific mRNA signatures using The Cancer Genome Atlas (TCGA) HCC cohort (n=371 patients). The results indicated that PD-1 inhibition increased the anti-tumor effects of DC-CIK cells over those of DC-CIK cells alone, resulting in a survival benefit importantly. Time-lapse imaging revealed that DC-CIK cells appeared to be more effective and aggressive after anti-PD-1 treatment than after culture in control conditions. The PD-1 inhibitor also induced more effective immune cell infiltration of the tumor. Our analysis of the TCGA HCC cohort confirmed that a genetic signature consistent with a high degree of intratumoral CD8+ T cell infiltration is associated with good prognosis. These results suggest that blockade of the PD-1/PD-L1 axis in DC-CIK cells with a PD-1 inhibitor prior to infusion is a promising therapeutic strategy against HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...