Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35510610

RESUMO

While screening our in-house 1072 marketed drugs for their ability to extend the lifespan using Caenorhabditis elegans (C. elegans) as an animal model, crotamiton (N-ethyl-o-crotonotoluidide) showed anti-aging activity and was selected for further structural optimization. After replacing the ortho-methyl of crotamiton with ortho-fluoro, crotamiton derivative JM03 was obtained and showed better activity in terms of lifespan-extension and stress resistance than crotamiton. It was further explored that JM03 extended the lifespan of C. elegans through osmotic avoidance abnormal-9 (OSM-9). Besides, JM03 improves the ability of nematode to resist oxidative stress and hypertonic stress through OSM-9, but not osm-9/capsaicin receptor related-2 (OCR-2). Then the inhibition of OSM-9 by JM03 reduces the aggregation of Q35 in C. elegans via upregulating the genes associated with proteostasis. SKN-1 signaling was also found to be activated after JM03 treatment, which might contribute to proteostasis, stress resistance and lifespan extension. In summary, this study explored a new small molecule derived from crotamiton, which has efficient anti-oxidative, anti-hypertonic, and anti-aging effects, and could further lead to promising application prospects.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade/genética , Proteínas do Tecido Nervoso , Pressão Osmótica , Estresse Oxidativo , Canais de Cátion TRPV , Toluidinas
2.
Exp Gerontol ; 163: 111800, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35398171

RESUMO

With a rise in the need to develop anti-aging drugs, a growing number of in vivo studies evaluating the efficacy of potential drug candidates have used doxorubicin-induced aging mice. However, changes in the biomarkers of senescent cells have not been reported in detail in these animals. To lay a foundation for the use of doxorubicin-induced aging mice, we examined the biomarkers of hepatic and renal senescent cells in these mice. We found that the 5 mg/kg doxorubicin dose is optimal to induce cellular senescence in mice. Subsequently, using this dose, we found that doxorubicin-induced an increase in senescence-associated ß-galactosidase (SA-ß-gal) positive cells in the kidney and lipofuscin accumulation in the liver. Some markers of senescent cells (p21WAF1/CIP1, p16INK4A, and γH2AX) were also significantly upregulated by doxorubicin and then counteracted by metformin treatment. These preliminary findings support the application of doxorubicin-induced aging mice as an animal model to evaluate the efficacy of anti-aging drug candidates.


Assuntos
Envelhecimento , Senescência Celular , Animais , Biomarcadores , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Doxorrubicina/farmacologia , Camundongos , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...