Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 22(1): 213, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35219305

RESUMO

BACKGROUND: Glioma cells are characterized by high migration ability, resulting in aggressive growth of the tumors and poor prognosis of patients. It has been reported that the stress-induced hormone norepinephrine (NE) contributes to tumor progression through mediating a number of important biological processes in various cancers. However, the role of NE in the regulation of glioma migration is still unclear. Epithelial-to-mesenchymal transition (EMT) is one of the most important steps for tumor migration and metastasis. Twist1, as a key regulator of EMT, has been found to be elevated during glioma migration. But it is still unknown whether Twist1 is involved in the effect of NE on the migration of glioma cells. METHODS: Wound healing assay and transwell assay were conducted to evaluate the migration of glioma cells upon different treatments. The mesenchymal-like phenotype and the expression of Twist1 after NE treatment were assessed by cell diameters, real-time PCR, western blot and immunofluorescence staining. The gain-and loss-of-function experiments were carried out to investigate the biological function of Twist1 in the migration induced by NE. Finally, the clinical significance of Twist1 was explored among three public glioma datasets. RESULTS: In this study, our finding revealed a facilitative effect of NE on glioma cell migration in a ß-adrenergic receptor (ADRB)-dependent way. Mechanistically, NE induced mesenchymal-like phenotype and the expression of Twist1. Twist1 overexpression promoted glioma cells migration, while knockdown of Twist1 abolished the discrepancy in the migration ability between NE treated glioma cells and control cells. In addition, the clinical analysis demonstrated that Twist1 was up-regulated in malignant gliomas and recurrent gliomas, and predicted a poor prognosis of glioma patients. CONCLUSIONS: NE enhanced the migration ability of glioma cells through elevating the expression of Twist1. Our finding may provide potential therapeutic target for protecting patients with glioma from the detrimental effects of stress biology on the tumor progression.


Assuntos
Movimento Celular/efeitos dos fármacos , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Glioma/tratamento farmacológico , Norepinefrina/farmacologia , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Regulação para Cima/efeitos dos fármacos , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos
2.
Artigo em Inglês | MEDLINE | ID: mdl-32382313

RESUMO

Ulcerative colitis (UC) has multifactorial pathogenesis that acts synergistically, such as immune system dysregulation and expansion of infectious gut microbiota. Therefore, a multicomponent treatment derived from Chinese herbal medicine that interacts with multiple targets synergistically is needed. Composite sophora colon-soluble capsule (CSCC) is a Chinese herbal formula that has shown therapeutic efficacy against UC in randomized clinical trials. However, its bioactive components and potential target genes against UC remain unclear. Here, we used a network pharmacology approach to detect component-target-pathway interactions of CSCC against UC. A total of 29 gene targets, 91 bioactive components, and 20 enriched pathways of CSCC were identified. The IL-17 signaling pathway activated by infectious gastrointestinal microbes and predicted by the network analysis to be a major pathway modulated by CSCC against UC was studied in a dextran sulfate sodium-induced colitis model. CSCC showed remarkable efficacy against UC with respect to the attenuation of colon length, body weight loss, and disease activity index through gut microbiota recovery and intestinal immune homeostasis. The rectal administration of CSCC reduced the numbers of Th17 cells isolated from both mesenteric lymph nodes and lamina propria mononuclear cells and the levels of IL-17A, IL-6, IL-1ß, and TNF-α. Additionally, the percentage of Treg cells and the levels of their hallmark cytokines were upregulated. Rectal administration of CSCC led to microbiota regulation with a significant correlation between suppression of Verrucomicrobiaceae and Ruminococcaceae, as well as the elevation of Lactobacillaceae, and CSCC administration via microbiome correlation heatmaps and cooccurrence network analysis at multiple time points. Thus, our study presents an effective herbal formula, CSCC, for UC treatment and explores its components and mechanisms of efficacy through the examination of gut microbiota and hallmark cytokines in the IL-17 pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...