Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 901: 148173, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242376

RESUMO

Cadmium (Cd) is a toxic environmental pollutant, posing a high risk to crop production and human health. However, the genetic mechanisms for regulation of Cd accumulation in crops are poorly understood. In this study, we functionally identified a novel long non-coding RNA (lncRNA, TCONS_00502780) that repressed a locus encoding an uncharacterized metal transporter ZIP16 (ZRT/IRT-like Protein) in rice. LncRNA-OsZIP16 (L16) is resident in the antisense strand of OsZIP16. Both L16 and OsZIP16 were transcriptionally expressed during the life cycle, but under Cd stress the L16 transcription was repressed, whereas the OsZIP16 expression was upregulated. OsZIP16 is localized to the endoplasmic reticulum. Knocking out OsZIP16 by CRISPR-Cas9 (C16) resulted in Cd sensitivity, manifested by reduced plant growth and intense cellular damage with a slightly higher Cd translocation from roots to shoots, suggesting that OsZIP16 expression is required for rice growth and development under Cd stress. Conversely, OsZIP16 constitutive overexpression (OE16) lines displayed a growth phenotype compatible to the wide-type with lower Cd translocation ratio from roots to shoots. L16 knock-down lines by RNA interference (L16-R) showed a similar phenotype to the OE16 lines, while the L16 overexpression (L16-OE) lines were phenotypically similar to the C16 lines. The OsZIP16 transcription was upregulated in the L16-R lines but downregulated in the L16-OE lines. Using an antibody against the trimethylation of histone H3 lysine 27 (H3K27me3) followed by chromatin immunoprecipitation (ChIP), we found the reduced H3K27me3 methylation marks surrounding the OsZIP16 gene under Cd stress. Further examination of H3K27me3 in the L16-R lines revealed that the methylation levels were also significantly lower than those in WT. Taken together, these data suggest that the L16 could negatively regulate the OsZIP16 transcriptional expression through an epigenetic mechanism for rice adaption to Cd stress.


Assuntos
Oryza , RNA Longo não Codificante , Humanos , Cádmio/toxicidade , Cádmio/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Histonas/metabolismo , Metilação , Interferência de RNA , Oryza/genética , Oryza/metabolismo , Raízes de Plantas/genética
2.
Plant Sci ; 291: 110359, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31928685

RESUMO

Salt stress is one of the major environmental factors limiting crop productivity. Although physiological and molecular characterization of salt stress response in plants has been the focus for many years, research on transporters for sodium ion (Na+) uptake, translocation and accumulation in plants, particularly in food crops like rice is limited. In this study, we functionally identified an uncharacterized sodium ion transporter named OsNHAD which encodes a putative Na+ / H+ antiporter in rice. Homology search shows its close relation to the Arabidopsis Na+/H+ antiporter AtNHD1 with 72.74% identity of amino acids. OsNHAD transcripts mainly express in leaves and are induced by Na+ stress. Confocal laser scanning microscopy analysis of OsNHAD::GFP fusion in tobacco leaves shows that OsNHAD resides in the chloroplast envelop. Knock-down of OsNHAD by RNA interference led to increased rice sensitivity to Na+, manifested by stunted plant growth, enhanced cellular damage, reduced PSII activity and changed chloroplast morphology. Mutation of OsNHAD also resulted in accumulation of more Na+ in chloroplasts and in shoots as well, suggesting that OsNHAD is involved in mediating efflux and detoxification of Na+ but does not affect K+ accumulation in plant cells. Complementation test reveals that OsNHAD was able to functionally restore the Arabidopsis mutant atnhd1-1 growth phenotype. These results suggest that OsNHAD possibly mediates homeostasis of sodium ions in the subcellular compartments and tissues of the plants when challenged to salt stress.


Assuntos
Cloroplastos/metabolismo , Oryza/fisiologia , Proteínas de Plantas/genética , Estresse Salino/genética , Trocadores de Sódio-Hidrogênio/genética , Oryza/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...