Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB Bioadv ; 6(7): 200-206, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974116

RESUMO

Bile acids regulate gastrointestinal motility by mechanisms that are poorly understood. Standard isolated tissue bath assays might not recapitulate in vivo physiology if contractile responses to certain bile acids require direct application to the intestinal mucosa. We sought to determine the feasibility of quantifying longitudinal smooth muscle contractile responses to bile acids from intact segments of everted mouse ileum. Ileum from adult female C57BL/6J mice was isolated, gently everted over a notched metal rod, and mounted in tissue baths. Individual bile acids and agonists of bile acid receptors were added to the baths, and longitudinal smooth muscle contractile responses were quantified by isometric force transduction. Ursodeoxycholic acid robustly increased contractile responses in a dose-dependent manner. Deoxycholic acid stimulated contractility at low doses but inhibited contractility at high doses. Chenodeoxycholic acid, glycocholic acid, and lithocholic acid did not alter contractility. The dose-dependent increase in contractility resulting from the application of ursodeoxycholic acid was recapitulated by INT-777, an agonist of the Takeda G protein-coupled receptor 5 (TGR5), and by cevimeline, a muscarinic acetylcholine receptor agonist. Agonists to the nuclear receptors farnesoid X receptor, glucocorticoid receptor, pregnane X receptor, vitamin D receptor, and to the plasma membrane epidermal growth factor receptor did not modify baseline contractile patterns. These results demonstrate that gentle eversion of intact mouse ileum facilitates the quantification of longitudinal smooth muscle contractile responses to individual bile acids. Prokinetic effects of ursodeoxycholic acid and low-dose deoxycholic acid are replicated by agonists to TGR5 and muscarinic acetylcholine receptors.

2.
Front Neurol ; 15: 1334319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721114

RESUMO

Background: Many disorders of gut-brain interaction (DGBIs) are more prevalent in women than men and feature alterations in gastrointestinal motility and bile acid homeostasis. Mechanisms by which bile acids regulate gastrointestinal motility are poorly characterized. We recently validated an adapted tissue bath technique using everted mouse ileum, which revealed differential contractile responses to ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA). Here, we aimed to determine whether these responses are dependent on host sex, the plasma membrane bile acid receptor TGR5, or the apical sodium-dependent bile acid transporter ASBT. Methods: Ileal segments from male and female mice were everted and suspended in tissue baths. Contractile responses to physiologic concentrations of UDCA and DCA were quantified with or without TGR5 or ASBT inhibitors. Phosphorylation of extracellular signal-regulated kinase (ERK) and myosin light chain (MLC), markers of TGR5 activation and smooth muscle contraction, respectively, were assessed with western blot. Results: There were no sex differences in the dose-dependent contractile responses to bile acids. At 100 µmol/L, UDCA but not DCA increased MLC phosphorylation and increased contractility. TGR5 inhibition decreased ERK phosphorylation and led to decreases in contractility, phosphorylated MLC, and surprisingly, total MLC. ASBT inhibition did not affect contractile responses. Conclusion: Differential effects of UDCA and DCA on ileal smooth muscle contractility are not dependent on host sex or ASBT-mediated transport. Bile acids signal through mucosal TGR5, which regulates smooth muscle contractility by complex mechanisms. Understanding how bile acids differentially regulate gastrointestinal motility could facilitate new therapeutic options for specific DGBIs.

3.
Neurogastroenterol Motil ; 35(11): e14676, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37772676

RESUMO

BACKGROUND: Early-life events impact maturation of the gut microbiome, enteric nervous system, and gastrointestinal motility. We examined three regions of gastric tissue to determine how maternal separation and gut microbes influence the structure and motor function of specific regions of the neonatal mouse stomach. METHODS: Germ-free and conventionally housed C57BL/6J mouse pups underwent timed maternal separation (TmSep) or nursed uninterrupted (controls) until 14 days of life. We assessed gastric emptying by quantifying the progression of gavaged fluorescein isothiocyanate (FITC)-dextran. With isolated rings of forestomach, corpus, and antrum, we measured tone and contractility by force transduction, gastric wall thickness by light microscopy, and myenteric plexus neurochemistry by whole-mount immunostaining. KEY RESULTS: Regional gastric sampling revealed site-specific differences in contractile patterns and myenteric plexus structure. In neonatal mice, TmSep prolonged gastric emptying. In the forestomach, TmSep increased contractile responses to carbachol, decreased muscularis externa and mucosa thickness, and increased the relative proportion of myenteric plexus nNOS+ neurons. Germ-free conditions did not appreciably alter the structure or function of the neonatal mouse stomach and did not impact the changes caused by TmSep. CONCLUSIONS AND INFERENCES: A regional sampling approach facilitates site-specific investigations of murine gastric motor physiology and histology to identify site-specific alterations that may impact gastrointestinal function. Delayed gastric emptying in TmSep is associated with a thinner muscle wall, exaggerated cholinergic contractile responses, and increased proportions of inhibitory myenteric plexus nNOS+ neurons in the forestomach. Gut microbes do not profoundly affect the development of the neonatal mouse stomach or the gastric pathophysiology that results from TmSep.


Assuntos
Gastroparesia , Camundongos , Animais , Animais Recém-Nascidos , Privação Materna , Camundongos Endogâmicos C57BL , Estômago , Plexo Mientérico/patologia , Modelos Animais de Doenças , Esvaziamento Gástrico
4.
Gut Microbes ; 15(1): 2183690, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843227

RESUMO

Cholestasis refers to impaired bile flow from the liver to the intestine. In neonates, cholestasis causes poor growth and may progress to liver failure and death. Normal bile flow requires an intact liver-gut-microbiome axis, whereby liver-derived primary bile acids are transformed into secondary bile acids. Microbial bile salt hydrolase (BSH) enzymes are responsible for the first step, deconjugating glycine- and taurine-conjugated primary bile acids. Cholestatic neonates often are treated with the potent choleretic bile acid ursodeoxycholic acid (UDCA), although interactions between UDCA, gut microbes, and other bile acids are poorly understood. To gain insight into how the liver-gut-microbiome axis develops in extreme prematurity and how cholestasis alters this maturation, we conducted a nested case-control study collecting 124 stool samples longitudinally from 24 preterm infants born at mean 27.2 ± 1.8 weeks gestation and 946 ± 249.6 g, half of whom developed physiologic cholestasis. Samples were analyzed by whole metagenomic sequencing, in vitro BSH enzyme activity assays optimized for low biomass fecal samples, and quantitative mass spectrometry to measure the bile acid metabolome. In extremely preterm neonates, acquisition of the secondary bile acid biosynthesis pathway and BSH genes carried by Clostridium perfringens are the most prominent features of early microbiome development. Cholestasis interrupts this developmental pattern. BSH gene abundance and enzyme activity are profoundly reduced in cholestatic neonates, resulting in decreased quantities of unconjugated bile acids. UDCA restores total fecal bile acid levels in cholestatic neonates, but this is due to a 522-fold increase in fecal UDCA. A majority of bile acids in early development are atypical positional and stereo-isomers of bile acids. We report novel associations linking isomeric bile acids and BSH activity to neonatal growth trajectories. These data highlight deconjugation of bile acids as a key microbial function that is acquired in early neonatal development and impaired by cholestasis.


Assuntos
Colestase , Microbioma Gastrointestinal , Humanos , Recém-Nascido , Estudos de Casos e Controles , Recém-Nascido Prematuro , Ácido Ursodesoxicólico , Ácidos e Sais Biliares
5.
Hepatol Commun ; 4(12): 1835-1850, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33305154

RESUMO

Liver dysfunction, including coagulopathy, is a prominent feature of protein-energy malnutrition. To identify mechanisms underlying malnutrition-associated coagulopathy, we administered a low-protein low-fat diet to lactating dams and examined hepatic transcription and plasma coagulation parameters in young adult weanlings. Malnutrition impacted body composition to a greater extent in male versus female mice. Transcriptional profiles suggested opposing effects of nutrient-sensing nuclear receptors, namely induction of peroxisome proliferator-activated receptor α (PPARα) targets and repression of farnesoid-X-receptor (FXR) targets. Coagulopathy with decreased synthesis of fibrinogen-α (FGA) and factor 11 (F11) was observed in malnourished male animals but not female animals. In primary mouse hepatocytes, FXR agonist increased and PPARα agonist decreased Fga and F11 messenger RNA expression. Nuclear receptor DNA response elements were identified in the Fga and F11 gene regulatory regions, and opposing effects of FXR and PPARα were confirmed with luciferase assays. Unexpectedly, hepatic PPARα protein was markedly depleted in malnourished male liver and was not enriched on Fga or F11 response elements. Rather, there was loss of FXR binding at these response elements. Reduced PPARα protein was associated with loss of hepatocyte peroxisomes, which are necessary for bile acid biosynthesis, and with decreased concentrations of bile acids that function as FXR ligands, most notably the FXR agonist chenodeoxycholic acid. Conclusion: Malnutrition impairs growth and liver synthetic function more severely in male mice than in female mice. Malnourished male mice are coagulopathic and exhibit decreased hepatocyte peroxisomes, FXR agonist bile acids, FXR binding on Fga and F11 gene regulatory elements, and coagulation factor synthesis. These effects are absent in female mice, which have low baseline levels of PPARα, suggesting that nutrient-sensing nuclear receptors regulate coagulation factor synthesis in response to host nutritional status in a sex-specific manner.

6.
Neurogastroenterol Motil ; 32(12): e13936, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33021011

RESUMO

BACKGROUND: Slow gastrointestinal (GI) transit occurs in moderate-to-severe malnutrition. Mechanisms underlying malnutrition-associated dysmotility remain unknown, partially due to lack of animal models. This study sought to characterize GI dysmotility in mouse models of malnutrition. METHODS: Neonatal mice were malnourished by timed maternal separation. Alternatively, low-protein, low-fat diet was administered to dams, with malnourished neonates tested at two weeks or weaned to the same chow and tested as young adults. We determined total GI transit time by carmine red gavage, colonic motility by rectal bead latency, and both gastric emptying and small bowel motility with fluorescein isothiocyanate-conjugated dextran. We assessed histology with light microscopy, ex vivo contractility and permeability with force-transduction and Ussing chamber studies, and gut microbiota composition by 16S rDNA sequencing. KEY RESULTS: Both models of neonatal malnutrition and young adult malnourished males but not females exhibited moderate growth faltering, stunting, and grossly abnormal stomachs. Progression of fluorescent dye was impaired in both neonatal models of malnutrition, whereas gastric emptying was delayed only in maternally separated pups and malnourished young adult females. Malnourished young adult males but not females had atrophic GI mucosa, exaggerated intestinal contractile responses, and increased gut barrier permeability. These sex-specific abnormalities were associated with altered gut microbial communities. CONCLUSIONS & INFERENCES: Multiple models of early-life malnutrition exhibit delayed upper GI transit. Malnutrition affects young adult males more profoundly than females. These models will facilitate future studies to identify mechanisms underlying malnutrition-induced pathophysiology and sex-specific regulatory effects.


Assuntos
Gastroenteropatias/fisiopatologia , Motilidade Gastrointestinal/fisiologia , Desnutrição/fisiopatologia , Privação Materna , Caracteres Sexuais , Fatores Etários , Animais , Animais Recém-Nascidos , Feminino , Gastroenteropatias/etiologia , Gastroenteropatias/psicologia , Trânsito Gastrointestinal/fisiologia , Masculino , Desnutrição/complicações , Desnutrição/psicologia , Camundongos , Camundongos Endogâmicos C57BL
8.
J Biol Chem ; 294(50): 19081-19098, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31690622

RESUMO

Phosphatidylinositol-transfer proteins (PITPs) are key regulators of lipid signaling in eukaryotic cells. These proteins both potentiate the activities of phosphatidylinositol (PtdIns) 4-OH kinases and help channel production of specific pools of phosphatidylinositol 4-phosphate (PtdIns(4)P) dedicated to specific biological outcomes. In this manner, PITPs represent a major contributor to the mechanisms by which the biological outcomes of phosphoinositide are diversified. The two-ligand priming model proposes that the engine by which Sec14-like PITPs potentiate PtdIns kinase activities is a heterotypic lipid-exchange cycle where PtdIns is a common exchange substrate among the Sec14-like PITP family, but the second exchange ligand varies with the PITP. A major prediction of this model is that second-exchangeable ligand identity will vary from PITP to PITP. To address the heterogeneity in the second exchange ligand for Sec14-like PITPs, we used structural, computational, and biochemical approaches to probe the diversities of the lipid-binding cavity microenvironments of the yeast Sec14-like PITPs. The collective data report that yeast Sec14-like PITP lipid-binding pockets indeed define diverse chemical microenvironments that translate into differential ligand-binding specificities across this protein family.


Assuntos
Proteínas de Transporte/metabolismo , Lipídeos/química , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Sítios de Ligação , Proteínas de Transporte/química , Modelos Moleculares , Proteínas de Transferência de Fosfolipídeos/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
9.
Neurogastroenterol Motil ; 31(9): e13654, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31157504

RESUMO

BACKGROUND: An important limitation of gastrointestinal motility testing is high variability. Conditions that could contribute to variability, including the duration of pretest fasting and time of day, are rarely reported and have not been examined systematically. This study aimed to explore whether these conditions, as well as age, sex, and strain of mice, affect the results of a standard laboratory test of upper gastrointestinal motility. METHODS: Male and female 8-week-old C57BL/6J mice received a gastric gavage of fluorescein isothiocyanate (FITC)-conjugated dextran. FITC-dextran distribution was measured 30 minutes later. Mean geometric centers (MGCs) were calculated to determine the effects of short versus prolonged fasting and morning versus afternoon testing. The influence of age was assessed in 2- to 10-week-old animals, and the influence of strain was determined in C57BL/6J, BALB/c, and CD-1 mice. KEY RESULTS: Motility was sexually dimorphic. MGC progressed 19% further in 8-week-old C57BL/6J males versus females when tested in the morning after a short fast. Similar patterns were observed in morning or afternoon testing after overnight fasting. In males, motility was unaffected by time of day; however, MGC progressed 31% further in females tested in the afternoon versus morning after a short fast. Sex differences also were present in CD-1 but not BALB/c mice. Testing in neonates revealed strikingly low variability and no sex differences. CONCLUSIONS & INFERENCES: Fasting duration, time of day, age, sex, and strain of mice all influence upper gastrointestinal motility testing. Sex differences are not present in neonatal pups, but develop soon after weaning.


Assuntos
Jejum/fisiologia , Motilidade Gastrointestinal/fisiologia , Caracteres Sexuais , Fatores Etários , Animais , Animais Recém-Nascidos , Dextranos/administração & dosagem , Feminino , Fluoresceína-5-Isotiocianato/administração & dosagem , Fluoresceína-5-Isotiocianato/análogos & derivados , Motilidade Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Especificidade da Espécie , Fatores de Tempo
10.
Cells ; 8(5)2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035700

RESUMO

White adipose tissue (WAT) lipolysis contributes to energy balance during fasting. Lipolysis can proceed by the sequential hydrolysis of triglycerides (TGs) by adipose triglyceride lipase (ATGL), then of diacylglycerols (DGs) by hormone-sensitive lipase (HSL). We showed that the combined genetic deficiency of ATGL and HSL in mouse adipose tissue produces a striking different phenotype from that of isolated ATGL deficiency, inconsistent with the linear model of lipolysis. We hypothesized that the mechanism might be functional redundancy between ATGL and HSL. To test this, the TG hydrolase activity of HSL was measured in WAT. HSL showed TG hydrolase activity. Then, to test ATGL for activity towards DGs, radiolabeled DGs were incubated with HSL-deficient lipid droplet fractions. The content of TG increased, suggesting DG-to-TG synthesis rather than DG hydrolysis. TG synthesis was abolished by a specific ATGL inhibitor, suggesting that ATGL functions as a transacylase when HSL is deficient, transferring an acyl group from one DG to another, forming a TG plus a monoglyceride (MG) that could be hydrolyzed by monoglyceride lipase. These results reveal a previously unknown physiological redundancy between ATGL and HSL, a mechanism for the epistatic interaction between Pnpla2 and Lipe. It provides an alternative lipolytic pathway, potentially important in patients with deficient lipolysis.


Assuntos
Tecido Adiposo Branco/metabolismo , Diglicerídeos/metabolismo , Lipase/metabolismo , Esterol Esterase/metabolismo , Triglicerídeos/metabolismo , Animais , Metabolismo Energético/fisiologia , Lipólise/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
11.
J Cell Biol ; 217(1): 269-282, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29187527

RESUMO

Functional heterogeneity within the lipid droplet (LD) pool of a single cell has been observed, yet the underlying mechanisms remain enigmatic. Here, we report on identification of a specialized LD subpopulation characterized by a unique proteome and a defined geographical location at the nucleus-vacuole junction contact site. In search for factors determining identity of these LDs, we screened ∼6,000 yeast mutants for loss of targeting of the subpopulation marker Pdr16 and identified Ldo45 (LD organization protein of 45 kD) as a crucial targeting determinant. Ldo45 is the product of a splicing event connecting two adjacent genes (YMR147W and YMR148W/OSW5/LDO16). We show that Ldo proteins cooperate with the LD biogenesis component seipin and establish LD identity by defining positioning and surface-protein composition. Our studies suggest a mechanism to establish functional differentiation of organelles, opening the door to better understanding of metabolic decisions in cells.


Assuntos
Gotículas Lipídicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Gotículas Lipídicas/classificação , Metabolismo dos Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma , Saccharomyces cerevisiae/metabolismo
12.
J Inherit Metab Dis ; 38(1): 85-98, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25300978

RESUMO

Triglyceride (TG) synthesis, storage, and degradation together constitute cytoplasmic TG metabolism (CTGM). CTGM is mostly studied in adipocytes, where starting from glycerol-3-phosphate and fatty acyl (FA)-coenzyme A (CoA), TGs are synthesized then stored in cytoplasmic lipid droplets. TG hydrolysis proceeds sequentially, producing FAs and glycerol. Several reactions of CTGM can be catalyzed by more than one enzyme, creating great potential for complex tissue-specific physiology. In adipose tissue, CTGM provides FA as a systemic energy source during fasting and is related to obesity. Inborn errors and mouse models have demonstrated the importance of CTGM for non-adipose tissues, including skeletal muscle, myocardium and liver, because steatosis and dysfunction can occur. We discuss known inborn errors of CTGM, including deficiencies of: AGPAT2 (a form of generalized lipodystrophy), LPIN1 (childhood rhabdomyolysis), LPIN2 (an inflammatory condition, Majeed syndrome, described elsewhere in this issue), DGAT1 (protein loosing enteropathy), perilipin 1 (partial lipodystrophy), CGI-58 (gene ABHD5, neutral lipid storage disease (NLSD) with ichthyosis and "Jordan's anomaly" of vacuolated polymorphonuclear leukocytes), adipose triglyceride lipase (ATGL, gene PNPLA2, NLSD with myopathy, cardiomyopathy and Jordan's anomaly), hormone-sensitive lipase (HSL, gene LIPE, hypertriglyceridemia, and insulin resistance). Two inborn errors of glycerol metabolism are known: glycerol kinase (GK, causing pseudohypertriglyceridemia) and glycerol-3-phosphate dehydrogenase (GPD1, childhood hepatic steatosis). Mouse models often resemble human phenotypes but may diverge markedly. Inborn errors have been described for less than one-third of CTGM enzymes, and new phenotypes may yet be identified.


Assuntos
Citoplasma/metabolismo , Erros Inatos do Metabolismo/genética , Triglicerídeos/metabolismo , Adipócitos/citologia , Tecido Adiposo , Animais , Catálise , Modelos Animais de Doenças , Glicerol Quinase/genética , Glicerolfosfato Desidrogenase/genética , Glicerofosfatos/metabolismo , Humanos , Hidrólise , Lipídeos/química , Lipólise , Camundongos , Fenótipo , Distribuição Tecidual
14.
PLoS One ; 6(7): e21889, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21789191

RESUMO

The Arf1 exchange factor GBF1 (Golgi Brefeldin A resistance factor 1) and its effector COPI are required for delivery of ATGL (adipose triglyceride lipase) to lipid droplets (LDs). Using yeast two hybrid, co-immunoprecipitation in mammalian cells and direct protein binding approaches, we report here that GBF1 and ATGL interact directly and in cells, through multiple contact sites on each protein. The C-terminal region of ATGL interacts with N-terminal domains of GBF1, including the catalytic Sec7 domain, but not with full-length GBF1 or its entire N-terminus. The N-terminal lipase domain of ATGL (called the patatin domain) interacts with two C-terminal domains of GBF1, HDS (Homology downstream of Sec7) 1 and HDS2. These two domains of GBF1 localize to lipid droplets when expressed alone in cells, but not to the Golgi, unlike the full-length GBF1 protein, which localizes to both. We suggest that interaction of GBF1 with ATGL may be involved in the membrane trafficking pathway mediated by GBF1, Arf1 and COPI that contributes to the localization of ATGL to lipid droplets.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Lipase/metabolismo , Fator 1 de Ribosilação do ADP/química , Biocatálise , Fatores de Troca do Nucleotídeo Guanina/química , Células HeLa , Humanos , Imunoprecipitação , Lipase/química , Lipídeos , Microscopia Imunoeletrônica , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Técnicas do Sistema de Duplo-Híbrido
15.
Hepatology ; 54(1): 122-32, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21465509

RESUMO

UNLABELLED: Accumulation of cytoplasmic triacylglycerol (TG) underlies hepatic steatosis, a major cause of cirrhosis. The pathways of cytoplasmic TG metabolism are not well known in hepatocytes, but evidence suggests an important role in lipolysis for adipose triglyceride lipase (ATGL). We created mice with liver-specific inactivation of Pnpla2, the ATGL gene. These ATGLLKO mice had severe progressive periportal macrovesicular and pericentral microvesicular hepatic steatosis (73, 150, and 226 µmol TG/g liver at 4, 8, and 12 months, respectively). However, plasma levels of glucose, TG, and cholesterol were similar to those of controls. Fasting 3-hydroxybutyrate level was normal, but in thin sections of liver, beta oxidation of palmitate was decreased by one-third in ATGLLKO mice compared with controls. Tests of very low-density lipoprotein production, glucose, and insulin tolerance and gluconeogenesis from pyruvate were normal. Plasma alanine aminotransferase levels were elevated in ATGLLKO mice, but histological estimates of inflammation and fibrosis and messenger RNA (mRNA) levels of tumor necrosis factor-α and interleukin-6 were similar to or lower than those in controls. ATGLLKO cholangiocytes also showed cytoplasmic lipid droplets, demonstrating that ATGL is also a major lipase in cholangiocytes. There was a 50-fold reduction of hepatic diacylglycerol acyltransferase 2 mRNA level and a 2.7-fold increase of lipolysosomes in hepatocytes (P < 0.001), suggesting reduced TG synthesis and increased lysosomal degradation of TG as potential compensatory mechanisms. CONCLUSION: Compared with the hepatic steatosis of obesity and diabetes, steatosis in ATGL deficiency is well tolerated metabolically. ATGLLKO mice will be useful for studying the pathophysiology of hepatic steatosis.


Assuntos
Progressão da Doença , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Lipase/deficiência , Fígado/metabolismo , Fígado/fisiopatologia , Alanina Transaminase/metabolismo , Animais , Citoplasma/metabolismo , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Fígado Gorduroso/fisiopatologia , Feminino , Homeostase/fisiologia , Interleucina-6/metabolismo , Lipase/genética , Fígado/patologia , Cirrose Hepática/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
J Cell Sci ; 122(Pt 11): 1834-41, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19461073

RESUMO

Lipid droplets (LDs) are cytoplasmic organelles that store neutral lipids for use as an energy supply in times of nutrient deprivation and for membrane assembly. Misregulation of LD function leads to many human diseases, including lipodystrophy, obesity and neutral lipid storage disorders. A number of proteins have been shown to localize to the surface of lipid droplets, including lipases such as adipose triglyceride lipase (ATGL) and the PAT-domain proteins ADRP (adipophilin) and TIP47, but the mechanism by which they are targeted to LDs is not known. Here we demonstrate that ATGL and ADRP, but not TIP47, are delivered to LDs by a pathway mediated by the COPI and COPII coatomer proteins and their corresponding regulators.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Proteína Coatomer/metabolismo , Lipase/metabolismo , Lipídeos , Organelas/metabolismo , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Brefeldina A/metabolismo , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Recuperação de Fluorescência Após Fotodegradação , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipase/genética , Proteínas de Membrana/metabolismo , Organelas/ultraestrutura , Perilipina-2 , Perilipina-3 , Proteínas da Gravidez/metabolismo , Inibidores da Síntese de Proteínas/metabolismo , Transporte Proteico/fisiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Transporte Vesicular
17.
Mol Genet Metab ; 95(3): 117-26, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18762440

RESUMO

Fat cell lipolysis, the cleavage of triglycerides and release of fatty acids and glycerol, evolved to enable survival during prolonged food deprivation but is paradoxically increased in obesity, in which a surfeit of all energy metabolites is found. Essential, previously-unsuspected components have been discovered in the lipolytic machinery, at the protective interface of the lipid droplet surface and in the signaling pathways that control lipolysis. At least two adipocyte lipases are important for controlling lipolysis, hormone-sensitive lipase (HSL) and adipocyte triglyceride lipase (ATGL). Perilipin (PLIN) and possibly other proteins of the lipid droplet surface are master regulators of lipolysis, protecting or exposing the triglyceride core of the droplet to lipases. The prototypes for hormonal lipolytic control are beta adrenergic stimulation and suppression by insulin, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and PLIN. Newly-recognized mediators of lipolysis include atrial natriuretic peptide, cyclic GMP, the ketone body 3-hydroxybutyrate, AMP kinase and mitogen-activated kinases. Lipolysis must be interpreted in its physiological context since similar rates of basal or stimulated lipolysis occur under different conditions and by different mechanisms. Age, sex, anatomical site, genotype and species differences are each important variables. Manipulation of lipolysis has therapeutic potential in several inborn errors and in the metabolic syndrome that frequently complicates obesity.


Assuntos
Metabolismo Energético , Lipólise , Transdução de Sinais , Adipócitos/enzimologia , Adipócitos/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Lipase/genética , Lipase/metabolismo , Obesidade/metabolismo , Obesidade/terapia
18.
J Biol Chem ; 279(39): 40683-9, 2004 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-15220344

RESUMO

Hydrolysis of triglycerides is central to energy homeostasis in white adipose tissue (WAT). Hormone-sensitive lipase (HSL) was previously felt to mediate all lipolysis in WAT. Surprisingly, HSL-deficient mice show active HSL-independent lipolysis, suggesting that other lipase(s) also mediate triglyceride hydrolysis. To clarify this, we used functional proteomics to detect non-HSL lipase(s) in mouse WAT. After cell fractionation of intraabdominal WAT, most non-HSL neutral lipase activity is localized in the 100,000 x g infranatant and fat cake fractions. By oleic acid-linked agarose chromatography of infranatant followed by elution in a 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid gradient, we identified two peaks of esterase activity using p-nitrophenyl butyrate as a substrate. One of the peaks contained most of the lipase activity. In the corresponding fractions, gel permeation chromatography and SDS-PAGE, followed by tandem mass spectrometric analysis of excised Coomassie Blue-stained peptides, revealed carboxylesterase 3 (triacylglycerol hydrolase (TGH); EC 3.1.1.1). TGH is also the principle lipase of WAT fat cake extracts. Partially purified WAT TGH had lipase activity as well as lesser but detectable neutral cholesteryl ester hydrolase activity. Western blotting of subcellular fractions of WAT and confocal microscopy of fibroblasts following in vitro adipocytic differentiation are consistent with a distribution of TGH to endoplasmic reticulum, cytosol, and the lipid droplet. TGH is responsible for a major part of non-HSL lipase activity in WAT in vitro and may mediate some or all HSL-independent lipolysis in adipocytes.


Assuntos
Adipócitos/enzimologia , Lipase/fisiologia , Adipócitos/metabolismo , Ácidos Alcanossulfônicos/química , Animais , Western Blotting , Carboxilesterase/metabolismo , Colesterol/química , Cromatografia , Cromatografia em Agarose , Cromatografia em Gel , Citosol/metabolismo , Eletroforese em Gel de Poliacrilamida , Retículo Endoplasmático/metabolismo , Esterases/metabolismo , Fibroblastos/metabolismo , Hidrólise , Lipase/metabolismo , Metabolismo dos Lipídeos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Células NIH 3T3 , Ácido Oleico/química , Peptídeos/química , Esterol Esterase/metabolismo , Frações Subcelulares/metabolismo , Especificidade por Substrato , Fatores de Tempo , Triglicerídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...