Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
SLAS Technol ; : 100161, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901762

RESUMO

Most classification models for Alzheimer's Diagnosis (AD) do not have specific strategies for individual input samples, leading to the problem of easily overlooking personalized differences between samples. This research introduces a customized dynamically ensemble convolution neural network (PDECNN), which is able to build a specific integration strategy based on the distinctiveness of the sample. In this paper, we propose a personalized dynamic ensemble alzheimer's Diagnosis classification model. This model will dynamically modify the deteriorated brain areas of interest depending on various samples since it can adjust to variations in the degeneration of sample brain areas. In clinical problems, the PDECNN model has additional diagnostic importance since it can identify sample-specific degraded brain areas based on input samples. This model considers the variability of brain region degeneration levels between input samples, evaluates the degree of degeneration of specific brain regions using an attention mechanism, and selects and integrates brain region features based on the degree of degeneration. Furthermore, by redesigning the classification accuracy performance, we respectively improve it by 4 %, 11 %, and 8 %. Moreover, the degraded brain regions identified by the model show high consistency with the clinical manifestations of AD.

2.
SLAS Technol ; 29(3): 100145, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750819

RESUMO

Bioinformatics and Healthcare Integration Disease prediction models have been revolutionized by Big Data. These models, which make use of extensive medical data, predict illnesses before symptoms appear. Deep neural networks are well-known for their ability to increase accuracy by extending the network's depth and modifying weights through gradient descent. Traditional approaches, however, are hindered by issues such as gradient instability and delayed training. As a substitute, the Broad Learning (BL) system is introduced, which avoids gradient descent in favor of quick reconstruction by incremental learning. However, BL has trouble extracting complicated features from medical data, which makes it perform poorly in cases involving complex healthcare. We suggest ABL, which combines the effectiveness of BL with the noise reduction of Denoising Auto Encoder (AE), to address this. Robust feature extraction is an area in which the hybrid model shines, especially in intricate medical environments. Accuracy of up to 98.50 % is achieved by remarkable results from validation using a variety of datasets. The ability of ABL to quickly adapt through incremental learning suggests that it may be used to forecast diseases in complicated healthcare contexts with agility and accuracy.


Assuntos
Redes Neurais de Computação , Humanos , Aprendizado Profundo , Biologia Computacional/métodos
3.
Food Chem ; 454: 139747, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797095

RESUMO

The structure and function of dietary proteins, as well as their subcellular prediction, are critical for designing and developing new drug compositions and understanding the pathophysiology of certain diseases. As a remedy, we provide a subcellular localization method based on feature fusion and clustering for dietary proteins. Additionally, an enhanced PseAAC (Pseudo-amino acid composition) method is suggested, which builds upon the conventional PseAAC. The study initially builds a novel model of representing the food protein sequence by integrating autocorrelation, chi density, and improved PseAAC to better convey information about the food protein sequence. After that, the dimensionality of the fused feature vectors is reduced by using principal component analysis. With prediction accuracies of 99.24% in the Gram-positive dataset and 95.33% in the Gram-negative dataset, respectively, the experimental findings demonstrate the practicability and efficacy of the proposed approach. This paper is basically exploring pseudo-amino acid composition of not any clinical aspect but exploring a pharmaceutical aspect for drug repositioning.


Assuntos
Proteínas Alimentares , Proteínas Alimentares/química , Proteínas Alimentares/análise , Proteínas Alimentares/metabolismo , Aminoácidos/química , Aminoácidos/análise , Preparações Farmacêuticas/química , Preparações Farmacêuticas/análise
4.
BMC Med Inform Decis Mak ; 24(1): 92, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575951

RESUMO

Emerging from the convergence of digital twin technology and the metaverse, consumer health (MCH) is witnessing a transformative shift. The amalgamation of bioinformatics with healthcare Big Data has ushered in a new era of disease prediction models that harness comprehensive medical data, enabling the anticipation of illnesses even before the onset of symptoms. In this model, deep neural networks stand out because they improve accuracy remarkably by increasing network depth and making weight changes using gradient descent. Nonetheless, traditional methods face their own set of challenges, including the issues of gradient instability and slow training. In this case, the Broad Learning System (BLS) stands out as a good alternative. It gets around the problems with gradient descent and lets you quickly rebuild a model through incremental learning. One problem with BLS is that it has trouble extracting complex features from complex medical data. This makes it less useful in a wide range of healthcare situations. In response to these challenges, we introduce DAE-BLS, a novel hybrid model that marries Denoising AutoEncoder (DAE) noise reduction with the efficiency of BLS. This hybrid approach excels in robust feature extraction, particularly within the intricate and multifaceted world of medical data. Validation using diverse datasets yields impressive results, with accuracies reaching as high as 98.50%. DAE-BLS's ability to rapidly adapt through incremental learning holds great promise for accurate and agile disease prediction, especially within the complex and dynamic healthcare scenarios of today.


Assuntos
Big Data , Tecnologia , Humanos , Biologia Computacional , Instalações de Saúde , Redes Neurais de Computação
5.
Front Comput Neurosci ; 18: 1391025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38634017

RESUMO

According to experts in neurology, brain tumours pose a serious risk to human health. The clinical identification and treatment of brain tumours rely heavily on accurate segmentation. The varied sizes, forms, and locations of brain tumours make accurate automated segmentation a formidable obstacle in the field of neuroscience. U-Net, with its computational intelligence and concise design, has lately been the go-to model for fixing medical picture segmentation issues. Problems with restricted local receptive fields, lost spatial information, and inadequate contextual information are still plaguing artificial intelligence. A convolutional neural network (CNN) and a Mel-spectrogram are the basis of this cough recognition technique. First, we combine the voice in a variety of intricate settings and improve the audio data. After that, we preprocess the data to make sure its length is consistent and create a Mel-spectrogram out of it. A novel model for brain tumor segmentation (BTS), Intelligence Cascade U-Net (ICU-Net), is proposed to address these issues. It is built on dynamic convolution and uses a non-local attention mechanism. In order to reconstruct more detailed spatial information on brain tumours, the principal design is a two-stage cascade of 3DU-Net. The paper's objective is to identify the best learnable parameters that will maximize the likelihood of the data. After the network's ability to gather long-distance dependencies for AI, Expectation-Maximization is applied to the cascade network's lateral connections, enabling it to leverage contextual data more effectively. Lastly, to enhance the network's ability to capture local characteristics, dynamic convolutions with local adaptive capabilities are used in place of the cascade network's standard convolutions. We compared our results to those of other typical methods and ran extensive testing utilising the publicly available BraTS 2019/2020 datasets. The suggested method performs well on tasks involving BTS, according to the experimental data. The Dice scores for tumor core (TC), complete tumor, and enhanced tumor segmentation BraTS 2019/2020 validation sets are 0.897/0.903, 0.826/0.828, and 0.781/0.786, respectively, indicating high performance in BTS.

6.
J Neurosci Methods ; 406: 110128, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554787

RESUMO

BACKGROUND: In recent times, the expeditious expansion of Brain-Computer Interface (BCI) technology in neuroscience, which relies on electroencephalogram (EEG) signals associated with motor imagery, has yielded outcomes that rival conventional approaches, notably due to the triumph of deep learning. Nevertheless, the task of developing and training a comprehensive network to extract the underlying characteristics of motor imagining EEG data continues to pose challenges. NEW METHOD: This paper presents a multi-scale spatiotemporal self-attention (SA) network model that relies on an attention mechanism. This model aims to classify motor imagination EEG signals into four classes (left hand, right hand, foot, tongue/rest) by considering the temporal and spatial properties of EEG. It is employed to autonomously allocate greater weights to channels linked to motor activity and lesser weights to channels not related to movement, thus choosing the most suitable channels. Neuron utilises parallel multi-scale Temporal Convolutional Network (TCN) layers to extract feature information in the temporal domain at various scales, effectively eliminating temporal domain noise. RESULTS: The suggested model achieves accuracies of 79.26%, 85.90%, and 96.96% on the BCI competition datasets IV-2a, IV-2b, and HGD, respectively. COMPARISON WITH EXISTING METHODS: In terms of single-subject classification accuracy, this strategy demonstrates superior performance compared to existing methods. CONCLUSION: The results indicate that the proposed strategy exhibits favourable performance, resilience, and transfer learning capabilities.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Imaginação , Humanos , Eletroencefalografia/métodos , Imaginação/fisiologia , Atenção/fisiologia , Redes Neurais de Computação , Atividade Motora/fisiologia , Encéfalo/fisiologia , Movimento/fisiologia , Processamento de Sinais Assistido por Computador
7.
PLoS One ; 19(3): e0297870, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527060

RESUMO

The best biocontroller Bacillus subtilis produced silver nanoparticles (AgNPs) with a spherical form and a 62 nm size through green synthesis. Using UV-vis spectroscopy, PSA, and zeta potential analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy, the properties of synthesized silver nanoparticles were determined. Silver nanoparticles were tested for their antifungicidal efficacy against the most virulent isolate of the Aspergillus flavus fungus, JAM-JKB-BHA-GG20, and among the 10 different treatments, the treatment T6 [PDA + 1 ml of NP (19: 1)] + Pathogen was shown to be extremely significant (82.53%). TG-51 and GG-22 were found to be the most sensitive groundnut varieties after 5 and 10 days of LC-MS QTOF infection when 25 different groundnut varieties were screened using the most toxic Aspergillus flavus isolate JAM- JKB-BHA-GG20, respectively. In this research, the most susceptible groundnut cultivar, designated GG-22, was tested. Because less aflatoxin (1651.15 g.kg-1) was observed, treatment T8 (Seed + Pathogen + 2 ml silver nanoparticles) was determined to be much more effective. The treated samples were examined by Inductively Coupled Plasma Mass Spectrometry for the detection of metal ions and the fungicide carbendazim. Ag particles (0.8 g/g-1) and the fungicide carbendazim (0.025 g/g-1) were found during Inductively Coupled Plasma Mass Spectrometry analysis below detectable levels. To protect plants against the invasion of fungal pathogens, environmentally friendly green silver nanoparticle antagonists with antifungal properties were able to prevent the synthesis of mycotoxin by up to 82.53%.


Assuntos
Benzimidazóis , Carbamatos , Fungicidas Industriais , Nanopartículas Metálicas , Antifúngicos/farmacologia , Aspergillus flavus , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Aspergillus , Bactérias , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/química , Testes de Sensibilidade Microbiana
8.
Open Life Sci ; 18(1): 20220764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027230

RESUMO

In the rapidly evolving landscape of agricultural technology, image processing has emerged as a powerful tool for addressing critical agricultural challenges, with a particular focus on the identification and management of crop diseases. This study is motivated by the imperative need to enhance agricultural sustainability and productivity through precise plant health monitoring. Our primary objective is to propose an innovative approach combining support vector machine (SVM) with advanced image processing techniques to achieve precise detection and classification of fig leaf diseases. Our methodology encompasses a step-by-step process, beginning with the acquisition of digital color images of diseased leaves, followed by denoising using the mean function and enhancement through Contrast-limited adaptive histogram equalization. The subsequent stages involve segmentation through the Fuzzy C Means algorithm, feature extraction via Principal Component Analysis, and disease classification, employing Particle Swarm Optimization (PSO) in conjunction with SVM, Backpropagation Neural Network, and Random Forest algorithms. The results of our study showcase the exceptional performance of the PSO SVM algorithm in accurately classifying and detecting fig leaf disease, demonstrating its potential for practical implementation in agriculture. This innovative approach not only underscores the significance of advanced image processing techniques but also highlights their substantial contributions to sustainable agriculture and plant disease mitigation. In conclusion, the integration of image processing and SVM-based classification offers a promising avenue for advancing crop disease management, ultimately bolstering agricultural productivity and global food security.

9.
Open Life Sci ; 18(1): 20220746, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954104

RESUMO

Lung cancer is a substantial health issue globally, and it is one of the main causes of mortality. Malignant mesothelioma (MM) is a common kind of lung cancer. The majority of patients with MM have no symptoms. In the diagnosis of any disease, etiology is crucial. MM risk factor detection procedures include positron emission tomography, magnetic resonance imaging, biopsies, X-rays, and blood tests, which are all necessary but costly and intrusive. Researchers primarily concentrated on the investigation of MM risk variables in the study. Mesothelioma symptoms were detected with the help of data from mesothelioma patients. The dataset, however, included both healthy and mesothelioma patients. Classification algorithms for MM illness diagnosis were carried out using computationally efficient data mining techniques. The support vector machine outperformed the multilayer perceptron ensembles (MLPE) neural network (NN) technique, yielding promising findings. With 99.87% classification accuracy achieved using 10-fold cross-validation over 5 runs, SVM is the best classification when contrasted to the MLPE NN, which achieves 99.56% classification accuracy. In addition, SPSS analysis is carried out for this study to collect pertinent and experimental data.

10.
Open Life Sci ; 18(1): 20220731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808875

RESUMO

Crohn's disease (CD) is a recurrent, chronic inflammatory condition of the gastrointestinal tract which is a clinical subtype of inflammatory bowel disease for which timely and non-invasive diagnosis in children remains a challenge. A novel predictive risk signature for pediatric CD diagnosis was constructed from bioinformatics analysis of six mRNAs, adenomatosis polyposis downregulated 1 (APCDD1), complement component 1r, mitogen-activated protein kinase kinase kinase kinase 5 (MAP3K5), lysophosphatidylcholine acyltransferase 1, sphingomyelin synthase 1 and transmembrane protein 184B, and validated using samples. Statistical evaluation was performed by support vector machine learning, weighted gene co-expression network analysis, differentially expressed genes and pathological assessment. Hematoxylin-eosin staining and immunohistochemistry results showed that APCDD1 was highly expressed in pediatric CD tissues. Evaluation by decision curve analysis and area under the curve indicated good predictive efficacy. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and gene set enrichment analysis confirmed the involvement of immune and cytokine signaling pathways. A predictive risk signature for pediatric CD is presented which represents a non-invasive supplementary tool for pediatric CD diagnosis.

11.
Cureus ; 15(2): e35085, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36938263

RESUMO

This review is based on the surgery-first approach for dentofacial deformity. This review has critically highlighted various promising aspects and factors associated with dentofacial deformity and can be viewed as valuable research work. In addition, this review highlights a systematic manner of surgery that can reduce the possible duration of treatment. The main findings of the review have established that the appropriate approaches to surgery can be beneficial for patients of any age group. The surgery-first approach is mainly utilized for tissue transfer as well as oral cancer as the first-line treatment. This critical review has successfully evaluated the limitations and advantageous traits of the specific surgery approach that has been outlined in this context. It has established the surgery approach as an effective measurement to reduce the time taken for treatment without compromising the patient's health. In the final phase of this review, the accuracy and appropriateness of this surgery-first approach have been effectively demonstrated.

12.
PeerJ Comput Sci ; 8: e1118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36426244

RESUMO

Mobile edge computational power faces the difficulty of balancing the energy consumption of many devices and workloads as science and technology advance. Most related research focuses on exploiting edge server computing performance to reduce mobile device energy consumption and task execution time during task processing. Existing research, however, shows that there is no adequate answer to the energy consumption balances between multi-device and multitasking. The present edge computing system model has been updated to address this energy consumption balance problem. We present a blockchain-based analytical method for the energy utilization balance optimization problem of multi-mobile devices and multitasking and an optimistic scenario on this foundation. An investigation of the corresponding approximation ratio is performed. Compared to the total energy demand optimization method and the random algorithm, many simulation studies have been carried out. Compared to the random process, the testing findings demonstrate that the suggested greedy algorithm can improve average performance by 66.59 percent in terms of energy balance. Furthermore, when the minimum transmission power of the mobile device is between five and six dBm, the greedy algorithm nearly achieves the best solution when compared to the brute force technique under the classical task topology.

13.
J Control Release ; 352: 931-945, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273527

RESUMO

COVID-19 acquired symptoms have affected the worldwide population and increased the load of Intensive care unit (ICU) patient admissions. A large number of patients admitted to ICU end with a deadly fate of mortality. A high mortality rate of patients was reported with hospital-acquired septic shock that leads to multiple organ failures and ultimately ends with death. The patients who overcome this septic shock suffer from morbidity that also affects their caretakers. To overcome these situations, scientists are exploring progressive theragnostic techniques with advanced techniques based on biosensors, biomarkers, biozymes, vesicles, and others. These advanced techniques pave the novel way for early detection of sepsis-associated symptoms and timely treatment with appropriate antibiotics and immunomodulators and prevent the undue effect on other parts of the body. There are other techniques like externally modulated electric-based devices working on the principle of piezoelectric mechanism that not only sense the endotoxin levels but also target them with a loaded antibiotic to neutralize the onset of inflammatory response. Recently researchers have developed a lipopolysaccharide (LPS) neutralizing cartridge that not only senses the LPS but also appropriately neutralizes with dual mechanistic insights of antibiotic and anti-inflammatory effects. This review will highlight recent developments in the new nanotechnology-based approaches for the diagnosis and therapeutics of sepsis that is responsible for the high number of deaths of patients suffering from this critical disease.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Sepse , Choque Séptico , Humanos , Choque Séptico/terapia , Unidades de Terapia Intensiva , Lipopolissacarídeos , COVID-19/diagnóstico , Sepse/diagnóstico , Sepse/tratamento farmacológico , Antibacterianos/uso terapêutico
14.
Comput Intell Neurosci ; 2022: 2455259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814591

RESUMO

Industry 4.0, with the widespread use of IoT, is a significant opportunity to improve the reliability of industrial equipment through problem detection. It is difficult to utilize a unified model to depict the working condition of devices in real-world industrial scenarios because of the complex and dynamic relationship between devices. The scope of this research is that it can detect equipment defects and deploys them in a natural production environment. The proposed research is describing an online detection method for system failures based on long short-term memory neural networks. In recent years, deep learning technology has taken over as the primary method for detecting faults. A neural network with a long short-term memory is used to develop an online defect detection model. Feature extraction from sensor data is done using the curve alignment method. Based on long-term memory neural networks, the fault detection model is built (LSTM). In the end, sliding window technology is used to identify and fix the problem: the model's online detection and update. The method's efficacy is demonstrated by experiments based on real data from power plant sensors.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Reprodutibilidade dos Testes , Projetos de Pesquisa , Tecnologia
15.
Comput Intell Neurosci ; 2022: 5497120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669675

RESUMO

The SEMRCNN model is proposed for autonomously extracting prostate cancer locations from regions of multiparametric magnetic resonance imaging (MP-MRI). Feature maps are explored in order to provide fine segmentation based on the candidate regions. Two parallel convolutional networks retrieve these maps of apparent diffusion coefficient (ADC) and T2W images, which are then integrated to use the complimentary information in MP-MRI. By utilizing extrusion and excitation blocks, it is feasible to automatically increase the number of relevant features in the fusion feature map. The aim of this study is to study the current scenario of the SE Mask-RCNN and deep convolutional network segmentation model that can automatically identify prostate cancer in the MP-MRI prostatic region. Experiments are conducted using 140 instances. SEMRCNN segmentation of prostate cancer lesions has a Dice coefficient of 0.654, a sensitivity of 0.695, a specificity of 0.970, and a positive predictive value of 0.685. SEMRCNN outperforms other models like as V net, Resnet50-U-net, Mask-RCNN, and U network model for prostate cancer MP-MRI segmentation. This approach accomplishes fine segmentation of lesions by recognizing and finding potential locations of prostate cancer lesions, eliminating interference from surrounding areas, and improving the learning of the lesions' features.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Atenção à Saúde , Imagem de Difusão por Ressonância Magnética , Humanos , Aprendizagem , Imageamento por Ressonância Magnética/métodos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia
16.
Smart Health (Amst) ; 25: 100296, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35722028

RESUMO

Given the novel corona virus discovered in Wuhan, China, in December 2019, due to the high false-negative rate of RT-PCR and the time-consuming to obtain the results, research has proved that computed tomography (CT) has become an auxiliary One of the essential means of diagnosis and treatment of new corona virus pneumonia. Since few COVID-19 CT datasets are currently available, it is proposed to use conditional generative adversarial networks to enhance data to obtain CT datasets with more samples to reduce the risk of over fitting. In addition, a BIN residual block-based method is proposed. The improved U-Net network is used for image segmentation and then combined with multi-layer perception for classification prediction. By comparing with network models such as AlexNet and GoogleNet, it is concluded that the proposed BUF-Net network model has the best performance, reaching an accuracy rate of 93%. Using Grad-CAM technology to visualize the system's output can more intuitively illustrate the critical role of CT images in diagnosing COVID-19. Applying deep learning using the proposed techniques suggested by the above study in medical imaging can help radiologists achieve more effective diagnoses that is the main objective of the research. On the basis of the foregoing, this study proposes to employ CGAN technology to augment the restricted data set, integrate the residual block into the U-Net network, and combine multi-layer perception in order to construct new network architecture for COVID-19 detection using CT images. -19. Given the scarcity of COVID-19 CT datasets, it is proposed that conditional generative adversarial networks be used to augment data in order to obtain CT datasets with more samples and therefore lower the danger of overfitting.

17.
J Drug Target ; 30(6): 603-613, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35311601

RESUMO

COVID-19 has affected the lives of billions of people and is a causative agent for millions of deaths. After 23 months of the first reported case of COVID-19, on 25th November 2020, a new SARS-COVID-19 variant, i.e. Omicron was reported with a WHO tagline of VoC that trembled the world with its infectivity rate. This fifth VoC raised the concern about neutralising ability and adequate control of SARS-COVID-19 infection due to mass vaccination drive (nearly more than 4.7 billion individuals got vaccinated globally till December 2021). However, the present scenario of VoCs highlights the importance of vaccination and public health measures that need to be followed strictly to prevent the fatality from Omicron. The world still needs to overcome the hesitancy that poses a major barrier to the implementation of vaccination. This review highlights the SARS-COVID-19 situation and discusses in detail the mutational events that occurred at a cellular level in different variants over time. This article is dedicated to the scientific findings reported during the recent outbreak of 2019-2022 and describes their symptoms, disease, spread, treatment, and preventive action advised. The article also focuses on the treatment options available for Covid-19 and the update of Omicron by expert agencies.


Assuntos
COVID-19 , SARS-CoV-2 , Evolução Molecular , Humanos , Mutação , SARS-CoV-2/genética
18.
J Healthc Eng ; 2022: 8472947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265307

RESUMO

Every human being has emotion for every item related to them. For every customer, their emotion can help the customer representative to understand their requirement. So, speech emotion recognition plays an important role in the interaction between humans. Now, the intelligent system can help to improve the performance for which we design the convolution neural network (CNN) based network that can classify emotions in different categories like positive, negative, or more specific. In this paper, we use the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) audio records. The Log Mel Spectrogram and Mel-Frequency Cepstral Coefficients (MFCCs) were used to feature the raw audio file. These properties were used in the classification of emotions using techniques, such as Long Short-Term Memory (LSTM), CNNs, Hidden Markov models (HMMs), and Deep Neural Networks (DNNs). For this paper, we have divided the emotions into three sections for males and females. In the first section, we divide the emotion into two classes as positive. In the second section, we divide the emotion into three classes such as positive, negative, and neutral. In the third section, we divide the emotions into 8 different classes such as happy, sad, angry, fearful, surprise, disgust expressions, calm, and fearful emotions. For these three sections, we proposed the model which contains the eight consecutive layers of the 2D convolution neural method. The purposed model gives the better-performed categories to other previously given models. Now, we can identify the emotion of the consumer in better ways.


Assuntos
Redes Neurais de Computação , Fala , Bases de Dados Factuais , Emoções , Feminino , Humanos , Masculino , Percepção
19.
Int J Med Inform ; 156: 104586, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34649112

RESUMO

BACKGROUND AND PURPOSE: Intravenous recombinant tissue plasminogen activator (rt-PA) remains the only FDA approved pharmacological therapy for acute ischemic stroke (AIS), but this treatment is associated with symptomatic intracerebral haemorrhage (SICH). The aim of this study was to derive and validate an accurate measure of SICH risk in ischemic stroke patients treated with rt-PA using data readily available from patient clinical records. METHODS: Demographics, physiological parameters, and clinical data were obtained from 1,270 ischemic stroke patients treated with thrombolysis at 20 hospitals. This included age, sex, weight, blood pressure, glucose levels, smoking preferences, and presence of previous clinical conditions. Using a bivariate analysis on a training dataset of 890 patients, SICH cases were compared against SICH-free patients and key risk factors associated with SICH were identified. Continuous variables were stratified using k-means clustering, and odds ratios computed for each of the categorical risk factors employed in the risk score. The SICH risk score, which was assessed using an independent validation dataset comprising 380 patients, was defined between 0 and 53, and stratified into 4 categories: very low risk (0-6), low risk (7-12), moderate risk (13-19), and high risk (>20). RESULTS: Older age (age > 75 years), higher blood pressure, higher severity of stroke, pre-treatment antithrombotic and history of hypertension and hyperlipidaemia, were shown to be significant risk factors for SICH following rt-PA treatment (p < 0.05). A number of interaction effects with age produced greater overall SICH risk than that of individual variables alone, including age*weight, age*NIHSS, age*diastolic blood pressure, and age*hypertension. The SICH prediction tool demonstrated a C-statistic of 0.75 for continuous risk scoring (0-53) and 0.71 for stratified risk levels. CONCLUSION: A novel, computationally efficient risk score utilising data readily available from patient clinical records was shown to predict SICH risk following thrombolysis treatment with high accuracy. This tool may be useful for pre-screening patients for SICH risk to reduce the morbidity and mortality associated with thrombolysis treatment.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Idoso , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/epidemiologia , Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/epidemiologia , Fibrinolíticos/efeitos adversos , Humanos , Fatores de Risco , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/epidemiologia , Terapia Trombolítica/efeitos adversos , Ativador de Plasminogênio Tecidual/efeitos adversos , Resultado do Tratamento
20.
Bioengineering (Basel) ; 8(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34356202

RESUMO

The use of video and music as an intrinsic, dissociative attentional stimulus during exercise is thought to distract from the physical discomfort of exercise, and contribute to improved exercise adherence; however, the effects of video-based feedback and engagement during pedaling on exercise performance and motivation are poorly understood. The aims of the present study were twofold. Firstly, to develop a novel video-based engagement regime for pedaling that links pedaling cadence with the play rate of a video, and secondly, to employ an instrumented pedaling device to assess the influence of the video engagement paradigm on cadence performance and exercise motivation. Eighteen healthy subjects participated in 15-min-duration pedaling sessions while targeting a specific low cadence (60 rotations per minute) and high cadence (100 rotations per minute), including pedaling with the provision of (i) target pedaling cadence information only, (ii) visual feedback on cadence control, including pedaling duration, pedaling cadence, and cadence deviation from target, and (iii) real-time engagement, which involved pedaling at the target speed to maintain the playback rate of a pre-recorded video. Cadence deviation from the target was evaluated, and self-reported exercise motivation examined with a post-exercise survey. Pedaling-cadence deviations significantly reduced with cadence feedback at both low and high cadence (p < 0.05). Participants reported enjoying feedback and video-based engagement during pedaling, with 83% of participants feeling that engagement motivated them to perform pedaling-based exercise. In conclusion, real-time cadence control feedback and video-based engagement during pedaling for healthy individuals may improve performance in targeted pedaling tasks. Through dissociation from the physical cues associated with exercise and fatigue, feedback and engagement may ultimately increase enjoyment and exercise compliance and adherence of pedaling-based exercise. The findings may be useful in prescription and maintenance of targeted pedaling exercises for stroke rehabilitation and exercise therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...